AoPS Community

USAMO 1991

www.artofproblemsolving.com/community/c4489
by MithsApprentice, e.lopes, xqpx, DPatrick, liangchene, rrusczyk

- \quad April 23rd

1 In triangle $A B C$, angle A is twice angle B, angle C is obtuse, and the three side lengths a, b, c are integers. Determine, with proof, the minimum possible perimeter.

2 For any nonempty set S of numbers, let $\sigma(S)$ and $\pi(S)$ denote the sum and product, respectively, of the elements of S. Prove that

$$
\sum \frac{\sigma(S)}{\pi(S)}=\left(n^{2}+2 n\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)(n+1)
$$

where " Σ " denotes a sum involving all nonempty subsets S of $\{1,2,3, \ldots, n\}$.
3 Show that, for any fixed integer $n \geq 1$, the sequence

$$
2,2^{2}, 2^{2^{2}}, 2^{2^{2^{2}}}, \ldots(\bmod n)
$$

is eventually constant.
[The tower of exponents is defined by $a_{1}=2, a_{i+1}=2^{a_{i}}$. Also $a_{i}(\bmod n)$ means the remainder which results from dividing a_{i} by n.]
$4 \quad$ Let $a=\frac{m^{m+1}+n^{n+1}}{m^{m}+n^{n}}$, where m and n are positive integers. Prove that $a^{m}+a^{n} \geq m^{m}+n^{n}$.
5 Let D be an arbitrary point on side $A B$ of a given triangle $A B C$, and let E be the interior point where $C D$ intersects the external common tangent to the incircles of triangles $A C D$ and $B C D$. As D assumes all positions between A and B, prove that the point E traces the arc of a circle.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

