

AoPS Community

1991 USAMO

USAMO 1991

www.artofproblemsolving.com/community/c4489

by MithsApprentice, e.lopes, xqpx, DPatrick, liangchene, rrusczyk

il 23rd

- 1 In triangle *ABC*, angle *A* is twice angle *B*, angle *C* is obtuse, and the three side lengths *a*, *b*, *c* are integers. Determine, with proof, the minimum possible perimeter.
- **2** For any nonempty set *S* of numbers, let $\sigma(S)$ and $\pi(S)$ denote the sum and product, respectively, of the elements of *S*. Prove that

$$\sum \frac{\sigma(S)}{\pi(S)} = (n^2 + 2n) - \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right)(n+1),$$

where " Σ " denotes a sum involving all nonempty subsets *S* of $\{1, 2, 3, ..., n\}$.

3 Show that, for any fixed integer $n \ge 1$, the sequence

$$2, 2^2, 2^{2^2}, 2^{2^2^2}, \dots (\mathsf{mod}\ n)$$

is eventually constant.

[The tower of exponents is defined by $a_1 = 2$, $a_{i+1} = 2^{a_i}$. Also $a_i \pmod{n}$ means the remainder which results from dividing a_i by n.]

- 4 Let $a = \frac{m^{m+1} + n^{n+1}}{m^m + n^n}$, where m and n are positive integers. Prove that $a^m + a^n \ge m^m + n^n$.
- 5 Let *D* be an arbitrary point on side AB of a given triangle ABC, and let *E* be the interior point where *CD* intersects the external common tangent to the incircles of triangles ACD and BCD. As *D* assumes all positions between *A* and *B*, prove that the point *E* traces the arc of a circle.
- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱