

AoPS Community

USAMO 1992

www.artofproblemsolving.com/community/c4490 by MithsApprentice, paul_mathematics, rrusczyk

-	April 30th
1	Find, as a function of n , the sum of the digits of
	$9 imes 99 imes 9999 imes \dots imes \left(10^{2^n}-1 ight),$
	where each factor has twice as many digits as the previous one.
2	Prove $\frac{1}{\cos 0^{\circ} \cos 1^{\circ}} + \frac{1}{\cos 1^{\circ} \cos 2^{\circ}} + \dots + \frac{1}{\cos 88^{\circ} \cos 89^{\circ}} = \frac{\cos 1^{\circ}}{\sin^2 1^{\circ}}.$
3	For a nonempty set <i>S</i> of integers, let $\sigma(S)$ be the sum of the elements of <i>S</i> . Suppose that $A = \{a_1, a_2, \ldots, a_{11}\}$ is a set of positive integers with $a_1 < a_2 < \cdots < a_{11}$ and that, for each positive integer $n \leq 1500$, there is a subset <i>S</i> of <i>A</i> for which $\sigma(S) = n$. What is the smallest possible value of a_{10} ?
4	Chords AA' , BB' , CC' of a sphere meet at an interior point P but are not contained in a plane. The sphere through A , B , C , P is tangent to the sphere through A' , B' , C' , P . Prove that $AA' = BB' = CC'$.
5	Let $P(z)$ be a polynomial with complex coefficients which is of degree 1992 and has distinct zeros. Prove that there exist complex numbers $a_1, a_2, \ldots, a_{1992}$ such that $P(z)$ divides the polynomial $\left(\cdots \left((z-a_1)^2-a_2\right)^2\cdots -a_{1991}\right)^2-a_{1992}.$
-	https://data.artofproblemsolving.com/images/maa_logo.png These problems are copy- right © Mathematical Association of America (http://maa.org).

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🗱

1992 USAMO