AoPS Community

USAMO 1997

www.artofproblemsolving.com/community/c4495
by MithsApprentice, Chinaboy, Agrippina, Maverick, rrusczyk

Day 1 May 1st

1 Let $p_{1}, p_{2}, p_{3}, \ldots$ be the prime numbers listed in increasing order, and let x_{0} be a real number between 0 and 1 . For positive integer k, define

$$
x_{k}= \begin{cases}0 & \text { if } x_{k-1}=0 \\ \left\{\frac{p_{k}}{x_{k-1}}\right\} & \text { if } x_{k-1} \neq 0\end{cases}
$$

where $\{x\}$ denotes the fractional part of x. (The fractional part of x is given by $x-\lfloor x\rfloor$ where $\lfloor x\rfloor$ is the greatest integer less than or equal to x.) Find, with proof, all x_{0} satisfying $0<x_{0}<1$ for which the sequence $x_{0}, x_{1}, x_{2}, \ldots$ eventually becomes 0 .

2 Let $A B C$ be a triangle. Take points D, E, F on the perpendicular bisectors of $B C, C A, A B$ respectively. Show that the lines through A, B, C perpendicular to $E F, F D, D E$ respectively are concurrent.

3 Prove that for any integer n, there exists a unique polynomial Q with coefficients in $\{0,1, \ldots, 9\}$ such that $Q(-2)=Q(-5)=n$.

Day 2 May 2nd

4 To clip a convex n-gon means to choose a pair of consecutive sides $A B, B C$ and to replace them by the three segments $A M, M N$, and $N C$, where M is the midpoint of $A B$ and N is the midpoint of $B C$. In other words, one cuts off the triangle $M B N$ to obtain a convex ($n+1$)-gon. A regular hexagon \mathcal{P}_{6} of area 1 is clipped to obtain a heptagon \mathcal{P}_{7}. Then \mathcal{P}_{7} is clipped (in one of the seven possible ways) to obtain an octagon \mathcal{P}_{8}, and so on. Prove that no matter how the clippings are done, the area of \mathcal{P}_{n} is greater than $\frac{1}{3}$, for all $n \geq 6$.

5 Prove that, for all positive real numbers a, b, c, the inequality

$$
\frac{1}{a^{3}+b^{3}+a b c}+\frac{1}{b^{3}+c^{3}+a b c}+\frac{1}{c^{3}+a^{3}+a b c} \leq \frac{1}{a b c}
$$

holds.
6 Suppose the sequence of nonnegative integers $a_{1}, a_{2}, \ldots, a_{1997}$ satisfies

$$
a_{i}+a_{j} \leq a_{i+j} \leq a_{i}+a_{j}+1
$$

for all $i, j \geq 1$ with $i+j \leq 1997$. Show that there exists a real number x such that $a_{n}=\lfloor n x\rfloor$ (the greatest integer $\leq n x$) for all $1 \leq n \leq 1997$.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa. org).

