AoPS Community

USAMO 1998

www.artofproblemsolving.com/community/c4496
by MithsApprentice, paul_mathematics, rrusczyk

Day 1 April 28th

1 Suppose that the set $\{1,2, \cdots, 1998\}$ has been partitioned into disjoint pairs $\left\{a_{i}, b_{i}\right\}(1 \leq i \leq$ 999) so that for all $i,\left|a_{i}-b_{i}\right|$ equals 1 or 6 . Prove that the sum

$$
\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|+\cdots+\left|a_{999}-b_{999}\right|
$$

ends in the digit 9.
2 Let \mathcal{C}_{1} and \mathcal{C}_{2} be concentric circles, with \mathcal{C}_{2} in the interior of \mathcal{C}_{1}. From a point A on \mathcal{C}_{1} one draws the tangent $A B$ to $\mathcal{C}_{2}\left(B \in \mathcal{C}_{2}\right)$. Let C be the second point of intersection of $A B$ and \mathcal{C}_{1}, and let D be the midpoint of $A B$. A line passing through A intersects \mathcal{C}_{2} at E and F in such a way that the perpendicular bisectors of $D E$ and $C F$ intersect at a point M on $A B$. Find, with proof, the ratio $A M / M C$.

3 Let $a_{0}, a_{1}, \cdots, a_{n}$ be numbers from the interval $(0, \pi / 2)$ such that

$$
\tan \left(a_{0}-\frac{\pi}{4}\right)+\tan \left(a_{1}-\frac{\pi}{4}\right)+\cdots+\tan \left(a_{n}-\frac{\pi}{4}\right) \geq n-1 .
$$

Prove that
$\tan a_{0} \tan a_{1} \cdots \tan a_{n} \geq n^{n+1}$.

Day 2 April 28th
4 A computer screen shows a 98×98 chessboard, colored in the usual way. One can select with a mouse any rectangle with sides on the lines of the chessboard and click the mouse button: as a result, the colors in the selected rectangle switch (black becomes white, white becomes black). Find, with proof, the minimum number of mouse clicks needed to make the chessboard all one color.
$5 \quad$ Prove that for each $n \geq 2$, there is a set S of n integers such that $(a-b)^{2}$ divides $a b$ for every distinct $a, b \in S$.

6 Let $n \geq 5$ be an integer. Find the largest integer k (as a function of n) such that there exists a convex n-gon $A_{1} A_{2} \ldots A_{n}$ for which exactly k of the quadrilaterals $A_{i} A_{i+1} A_{i+2} A_{i+3}$ have an inscribed circle. (Here $A_{n+j}=A_{j}$.)

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

