AoPS Community

USAMO 1999

www.artofproblemsolving.com/community/c4497
by MithsApprentice, tetrahedrOn, rrusczyk

Day 1 April 27th

1 Some checkers placed on an $n \times n$ checkerboard satisfy the following conditions:
(a) every square that does not contain a checker shares a side with one that does;
(b) given any pair of squares that contain checkers, there is a sequence of squares containing checkers, starting and ending with the given squares, such that every two consecutive squares of the sequence share a side.

Prove that at least $\left(n^{2}-2\right) / 3$ checkers have been placed on the board.
2 Let $A B C D$ be a cyclic quadrilateral. Prove that

$$
|A B-C D|+|A D-B C| \geq 2|A C-B D| .
$$

3 Let $p>2$ be a prime and let a, b, c, d be integers not divisible by p, such that

$$
\left\{\frac{r a}{p}\right\}+\left\{\frac{r b}{p}\right\}+\left\{\frac{r c}{p}\right\}+\left\{\frac{r d}{p}\right\}=2
$$

for any integer r not divisible by p. Prove that at least two of the numbers $a+b, a+c, a+d, b+c$, $b+d, c+d$ are divisible by p.
(Note: $\{x\}=x-\lfloor x\rfloor$ denotes the fractional part of x.)
Day 2 April 27th
4 Let $a_{1}, a_{2}, \ldots, a_{n}(n>3)$ be real numbers such that

$$
a_{1}+a_{2}+\cdots+a_{n} \geq n \quad \text { and } \quad a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \geq n^{2} .
$$

Prove that $\max \left(a_{1}, a_{2}, \ldots, a_{n}\right) \geq 2$.
5 The Y2K Game is played on a 1×2000 grid as follows. Two players in turn write either an S or an O in an empty square. The first player who produces three consecutive boxes that spell SOS wins. If all boxes are filled without producing SOS then the game is a draw. Prove that the second player has a winning strategy.
$6 \quad$ Let $A B C D$ be an isosceles trapezoid with $A B \| C D$. The inscribed circle ω of triangle $B C D$ meets $C D$ at E. Let F be a point on the (internal) angle bisector of $\angle D A C$ such that $E F \perp C D$. Let the circumscribed circle of triangle $A C F$ meet line $C D$ at C and G. Prove that the triangle $A F G$ is isosceles.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

