AoPS Community

USAMO 2000

www.artofproblemsolving.com/community/c4498
by lomos_lupin, MithsApprentice, fuzzylogic, rrusczyk

Day 1 May 2nd

1 Call a real-valued function f very convex if

$$
\frac{f(x)+f(y)}{2} \geq f\left(\frac{x+y}{2}\right)+|x-y|
$$

holds for all real numbers x and y. Prove that no very convex function exists.
2 Let S be the set of all triangles $A B C$ for which

$$
5\left(\frac{1}{A P}+\frac{1}{B Q}+\frac{1}{C R}\right)-\frac{3}{\min \{A P, B Q, C R\}}=\frac{6}{r},
$$

where r is the inradius and P, Q, R are the points of tangency of the incircle with sides $A B, B C, C A$, respectively. Prove that all triangles in S are isosceles and similar to one another.
$3 \quad$ A game of solitaire is played with R red cards, W white cards, and B blue cards. A player plays all the cards one at a time. With each play he accumulates a penalty. If he plays a blue card, then he is charged a penalty which is the number of white cards still in his hand. If he plays a white card, then he is charged a penalty which is twice the number of red cards still in his hand. If he plays a red card, then he is charged a penalty which is three times the number of blue cards still in his hand. Find, as a function of R, W, and B, the minimal total penalty a player can amass and all the ways in which this minimum can be achieved.

Day 2 May 2nd
4 Find the smallest positive integer n such that if n squares of a 1000×1000 chessboard are colored, then there will exist three colored squares whose centers form a right triangle with sides parallel to the edges of the board.
$5 \quad$ Let $A_{1} A_{2} A_{3}$ be a triangle and let ω_{1} be a circle in its plane passing through A_{1} and A_{2}. Suppose there exist circles $\omega_{2}, \omega_{3}, \ldots, \omega_{7}$ such that for $k=2,3, \ldots, 7, \omega_{k}$ is externally tangent to ω_{k-1} and passes through A_{k} and A_{k+1}, where $A_{n+3}=A_{n}$ for all $n \geq 1$. Prove that $\omega_{7}=\omega_{1}$.

6 Let $a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{n}, b_{n}$ be nonnegative real numbers. Prove that

$$
\sum_{i, j=1}^{n} \min \left\{a_{i} a_{j}, b_{i} b_{j}\right\} \leq \sum_{i, j=1}^{n} \min \left\{a_{i} b_{j}, a_{j} b_{i}\right\} .
$$

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa. org).

