AoPS Community

USAMO 2003

www.artofproblemsolving.com/community/c4501
by MithsApprentice, April, rrusczyk

Day 1 April 29th

1 Prove that for every positive integer n there exists an n-digit number divisible by 5^{n} all of whose digits are odd.

2 A convex polygon \mathcal{P} in the plane is dissected into smaller convex polygons by drawing all of its diagonals. The lengths of all sides and all diagonals of the polygon \mathcal{P} are rational numbers. Prove that the lengths of all sides of all polygons in the dissection are also rational numbers.

3 Let $n \neq 0$. For every sequence of integers

$$
A=a_{0}, a_{1}, a_{2}, \ldots, a_{n}
$$

satisfying $0 \leq a_{i} \leq i$, for $i=0, \ldots, n$, define another sequence

$$
t(A)=t\left(a_{0}\right), t\left(a_{1}\right), t\left(a_{2}\right), \ldots, t\left(a_{n}\right)
$$

by setting $t\left(a_{i}\right)$ to be the number of terms in the sequence A that precede the term a_{i} and are different from a_{i}. Show that, starting from any sequence A as above, fewer than n applications of the transformation t lead to a sequence B such that $t(B)=B$.

Day 2 April 30th

4 Let $A B C$ be a triangle. A circle passing through A and B intersects segments $A C$ and $B C$ at D and E, respectively. Lines $A B$ and $D E$ intersect at F, while lines $B D$ and $C F$ intersect at M. Prove that $M F=M C$ if and only if $M B \cdot M D=M C^{2}$.

5 Let a, b, c be positive real numbers. Prove that

$$
\frac{(2 a+b+c)^{2}}{2 a^{2}+(b+c)^{2}}+\frac{(2 b+c+a)^{2}}{2 b^{2}+(c+a)^{2}}+\frac{(2 c+a+b)^{2}}{2 c^{2}+(a+b)^{2}} \leq 8 .
$$

6 At the vertices of a regular hexagon are written six nonnegative integers whose sum is 2003^{2003}. Bert is allowed to make moves of the following form: he may pick a vertex and replace the number written there by the absolute value of the difference between the numbers written at the two neighboring vertices. Prove that Bert can make a sequence of moves, after which the number 0 appears at all six vertices.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

