AoPS Community

USAMO 2006

www.artofproblemsolving.com/community/c4504
by orl, rrusczyk

Day 1

1 Let p be a prime number and let s be an integer with $0<s<p$. Prove that there exist integers m and n with $0<m<n<p$ and

$$
\left\{\frac{s m}{p}\right\}<\left\{\frac{s n}{p}\right\}<\frac{s}{p}
$$

if and only if s is not a divisor of $p-1$.
Note: For x a real number, let $\lfloor x\rfloor$ denote the greatest integer less than or equal to x, and let $\{x\}=x-\lfloor x\rfloor$ denote the fractional part of x .

2 For a given positive integer k find, in terms of k, the minimum value of N for which there is a set of $2 k+1$ distinct positive integers that has sum greater than N but every subset of size k has sum at most $\frac{N}{2}$.

3 For integral m, let $p(m)$ be the greatest prime divisor of m. By convention, we set $p(\pm 1)=1$ and $p(0)=\infty$. Find all polynomials f with integer coefficients such that the sequence

$$
\left\{p\left(f\left(n^{2}\right)\right)-2 n\right\}_{n \geq 0}
$$

is bounded above. (In particular, this requires $f\left(n^{2}\right) \neq 0$ for $n \geq 0$.)

Day 2

4 Find all positive integers n such that there are $k \geq 2$ positive rational numbers $a_{1}, a_{2}, \ldots, a_{k}$ satisfying $a_{1}+a_{2}+\ldots+a_{k}=a_{1} \cdot a_{2} \cdots a_{k}=n$.

5 A mathematical frog jumps along the number line. The frog starts at 1, and jumps according to the following rule: if the frog is at integer n, then it can jump either to $n+1$ or to $n+2^{m_{n}+1}$ where $2^{m_{n}}$ is the largest power of 2 that is a factor of n. Show that if $k \geq 2$ is a positive integer and i is a nonnegative integer, then the minimum number of jumps needed to reach $2^{i} k$ is greater than the minimum number of jumps needed to reach 2^{i}.

6 Let $A B C D$ be a quadrilateral, and let E and F be points on sides $A D$ and $B C$, respectively, such that $\frac{A E}{E D}=\frac{B F}{F C}$. Ray $F E$ meets rays $B A$ and $C D$ at S and T, respectively. Prove that the circumcircles of triangles $S A E, S B F, T C F$, and $T D E$ pass through a common point.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

