

AoPS Community

2006 USAMO

USAMO 2006

www.artofproblemsolving.com/community/c4504 by orl, rrusczyk

Day 1

1 Let p be a prime number and let s be an integer with 0 < s < p. Prove that there exist integers m and n with 0 < m < n < p and

$$\left\{\frac{sm}{p}\right\} < \left\{\frac{sn}{p}\right\} < \frac{s}{p}$$

if and only if s is not a divisor of p-1.

Note: For x a real number, let $\lfloor x \rfloor$ denote the greatest integer less than or equal to x, and let $\{x\} = x - \lfloor x \rfloor$ denote the fractional part of x.

- **2** For a given positive integer k find, in terms of k, the minimum value of N for which there is a set of 2k + 1 distinct positive integers that has sum greater than N but every subset of size k has sum at most $\frac{N}{2}$.
- **3** For integral m, let p(m) be the greatest prime divisor of m. By convention, we set $p(\pm 1) = 1$ and $p(0) = \infty$. Find all polynomials f with integer coefficients such that the sequence

$$p\left(f\left(n^2\right)\right) - 2n\}_{n \ge 0}$$

is bounded above. (In particular, this requires $f(n^2) \neq 0$ for $n \geq 0$.)

ł

Day 2	
4	Find all positive integers n such that there are $k \ge 2$ positive rational numbers a_1, a_2, \ldots, a_k satisfying $a_1 + a_2 + \ldots + a_k = a_1 \cdot a_2 \cdots a_k = n$.
5	A mathematical frog jumps along the number line. The frog starts at 1, and jumps according to the following rule: if the frog is at integer n , then it can jump either to $n + 1$ or to $n + 2^{m_n+1}$ where 2^{m_n} is the largest power of 2 that is a factor of n . Show that if $k \ge 2$ is a positive integer and i is a nonnegative integer, then the minimum number of jumps needed to reach $2^i k$ is greater than the minimum number of jumps needed to reach 2^i .
6	Let $ABCD$ be a quadrilateral, and let E and F be points on sides AD and BC , respectively, such that $\frac{AE}{ED} = \frac{BF}{FC}$. Ray FE meets rays BA and CD at S and T , respectively. Prove that the circumcircles of triangles SAE , SBF , TCF , and TDE pass through a common point.

2006 USAMO

AoPS Community

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

AoPS Online 🔯 AoPS Academy 🙋 AoPS 🕬