AoPS Community

USAMO 2007

www.artofproblemsolving.com/community/c4505
by N.T.TUAN, rrusczyk

Day 1 April 24th

1 Let n be a positive integer. Define a sequence by setting $a_{1}=n$ and, for each $k>1$, letting a_{k} be the unique integer in the range $0 \leq a_{k} \leq k-1$ for which $a_{1}+a_{2}+\ldots+a_{k}$ is divisible by k. For instance, when $n=9$ the obtained sequence is $9,1,2,0,3,3,3, \ldots$. Prove that for any n the sequence a_{1}, a_{2}, \ldots eventually becomes constant.

2 A square grid on the Euclidean plane consists of all points (m, n), where m and n are integers. Is it possible to cover all grid points by an infinite family of discs with non-overlapping interiors if each disc in the family has radius at least 5 ?

3 Let S be a set containing $n^{2}+n-1$ elements, for some positive integer n. Suppose that the n-element subsets of S are partitioned into two classes. Prove that there are at least n pairwise disjoint sets in the same class.

Day 2 April 25th
4 An animal with n cells is a connected figure consisting of n equal-sized cells[1].
A dinosaur is an animal with at least 2007 cells. It is said to be primitive it its cells cannot be partitioned into two or more dinosaurs. Find with proof the maximum number of cells in a primitive dinosaur.
(1) Animals are also called polyominoes. They can be defined inductively. Two cells are adjacent if they share a complete edge. A single cell is an animal, and given an animal with n cells, one with $n+1$ cells is obtained by adjoining a new cell by making it adjacent to one or more existing cells.

5 Prove that for every nonnegative integer n, the number $7^{7^{n}}+1$ is the product of at least $2 n+3$ (not necessarily distinct) primes.

6 Let $A B C$ be an acute triangle with ω, S, and R being its incircle, circumcircle, and circumradius, respectively. Circle ω_{A} is tangent internally to S at A and tangent externally to ω. Circle S_{A} is tangent internally to S at A and tangent internally to ω. Let P_{A} and Q_{A} denote the centers of ω_{A} and S_{A}, respectively. Define points $P_{B}, Q_{B}, P_{C}, Q_{C}$ analogously. Prove that

$$
8 P_{A} Q_{A} \cdot P_{B} Q_{B} \cdot P_{C} Q_{C} \leq R^{3}
$$

with equality if and only if triangle $A B C$ is equilateral.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http: //maa. org).

