AoPS Community

USAMO 2008

www.artofproblemsolving.com/community/c4506
by worthawholebean, Valentin Vornicu, rrusczyk

Day 1 April 29th

1 Prove that for each positive integer n, there are pairwise relatively prime integers $k_{0}, k_{1}, \ldots, k_{n}$, all strictly greater than 1 , such that $k_{0} k_{1} \ldots k_{n}-1$ is the product of two consecutive integers.

2 Let $A B C$ be an acute, scalene triangle, and let M, N, and P be the midpoints of $\overline{B C}, \overline{C A}$, and $\overline{A B}$, respectively. Let the perpendicular bisectors of $\overline{A B}$ and $\overline{A C}$ intersect ray $A M$ in points D and E respectively, and let lines $B D$ and $C E$ intersect in point F, inside of triangle $A B C$. Prove that points A, N, F, and P all lie on one circle.

3 Let n be a positive integer. Denote by S_{n} the set of points (x, y) with integer coordinates such that

$$
|x|+\left|y+\frac{1}{2}\right|<n .
$$

A path is a sequence of distinct points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{\ell}, y_{\ell}\right)$ in S_{n} such that, for $i=$ $2, \ldots, \ell$, the distance between $\left(x_{i}, y_{i}\right)$ and $\left(x_{i-1}, y_{i-1}\right)$ is 1 (in other words, the points $\left(x_{i}, y_{i}\right)$ and (x_{i-1}, y_{i-1}) are neighbors in the lattice of points with integer coordinates). Prove that the points in S_{n} cannot be partitioned into fewer than n paths (a partition of S_{n} into m paths is a set \mathcal{P} of m nonempty paths such that each point in S_{n} appears in exactly one of the m paths in \mathcal{P}).

Day 2 April 30th
$4 \quad$ Let \mathcal{P} be a convex polygon with n sides, $n \geq 3$. Any set of $n-3$ diagonals of \mathcal{P} that do not intersect in the interior of the polygon determine a triangulation of \mathcal{P} into $n-2$ triangles. If \mathcal{P} is regular and there is a triangulation of \mathcal{P} consisting of only isosceles triangles, find all the possible values of n.

5 Three nonnegative real numbers r_{1}, r_{2}, r_{3} are written on a blackboard. These numbers have the property that there exist integers a_{1}, a_{2}, a_{3}, not all zero, satisfying $a_{1} r_{1}+a_{2} r_{2}+a_{3} r_{3}=0$. We are permitted to perform the following operation: find two numbers x, y on the blackboard with $x \leq y$, then erase y and write $y-x$ in its place. Prove that after a finite number of such operations, we can end up with at least one 0 on the blackboard.

6 At a certain mathematical conference, every pair of mathematicians are either friends or strangers. At mealtime, every participant eats in one of two large dining rooms. Each mathematician insists upon eating in a room which contains an even number of his or her friends. Prove that the
number of ways that the mathematicians may be split between the two rooms is a power of two (i.e., is of the form 2^{k} for some positive integer k).

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa. org).

