

AoPS Community

USAMO 2008

www.artofproblemsolving.com/community/c4506 by worthawholebean, Valentin Vornicu, rrusczyk

Day 1 April 29th

1	Prove that for each positive integer n , there are pairwise relatively prime integers k_0, k_1, \ldots, k_n , all strictly greater than 1, such that $k_0k_1 \ldots k_n - 1$ is the product of two consecutive integers.
2	Let ABC be an acute, scalene triangle, and let M , N , and P be the midpoints of \overline{BC} , \overline{CA} , and \overline{AB} , respectively. Let the perpendicular bisectors of \overline{AB} and \overline{AC} intersect ray AM in points D and E respectively, and let lines BD and CE intersect in point F , inside of triangle ABC . Prove that points A , N , F , and P all lie on one circle.

3 Let *n* be a positive integer. Denote by S_n the set of points (x, y) with integer coordinates such that

$$|x| + \left| y + \frac{1}{2} \right| < n.$$

A path is a sequence of distinct points $(x_1, y_1), (x_2, y_2), \ldots, (x_\ell, y_\ell)$ in S_n such that, for $i = 2, \ldots, \ell$, the distance between (x_i, y_i) and (x_{i-1}, y_{i-1}) is 1 (in other words, the points (x_i, y_i) and (x_{i-1}, y_{i-1}) are neighbors in the lattice of points with integer coordinates). Prove that the points in S_n cannot be partitioned into fewer than n paths (a partition of S_n into m paths is a set \mathcal{P} of m nonempty paths such that each point in S_n appears in exactly one of the m paths in \mathcal{P}).

Day 2 April 30th

- **4** Let \mathcal{P} be a convex polygon with n sides, $n \geq 3$. Any set of n 3 diagonals of \mathcal{P} that do not intersect in the interior of the polygon determine a *triangulation* of \mathcal{P} into n 2 triangles. If \mathcal{P} is regular and there is a triangulation of \mathcal{P} consisting of only isosceles triangles, find all the possible values of n.
- **5** Three nonnegative real numbers r_1 , r_2 , r_3 are written on a blackboard. These numbers have the property that there exist integers a_1 , a_2 , a_3 , not all zero, satisfying $a_1r_1 + a_2r_2 + a_3r_3 = 0$. We are permitted to perform the following operation: find two numbers x, y on the blackboard with $x \le y$, then erase y and write y x in its place. Prove that after a finite number of such operations, we can end up with at least one 0 on the blackboard.
- 6 At a certain mathematical conference, every pair of mathematicians are either friends or strangers. At mealtime, every participant eats in one of two large dining rooms. Each mathematician insists upon eating in a room which contains an even number of his or her friends. Prove that the

AoPS Community

number of ways that the mathematicians may be split between the two rooms is a power of two (i.e., is of the form 2^k for some positive integer k).

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.