AoPS Community

USAMO 2009

www.artofproblemsolving.com/community/c4507
by tenniskidperson3, azjps, rrusczyk

Day 1 April 28th

1 Given circles ω_{1} and ω_{2} intersecting at points X and Y, let ℓ_{1} be a line through the center of ω_{1} intersecting ω_{2} at points P and Q and let ℓ_{2} be a line through the center of ω_{2} intersecting ω_{1} at points R and S. Prove that if P, Q, R and S lie on a circle then the center of this circle lies on line $X Y$.

2 Let n be a positive integer. Determine the size of the largest subset of $\{-n,-n+1, \ldots, n-1, n\}$ which does not contain three elements a, b, c (not necessarily distinct) satisfying $a+b+c=0$.

3 We define a chessboard polygon to be a polygon whose sides are situated along lines of the form $x=a$ or $y=b$, where a and b are integers. These lines divide the interior into unit squares, which are shaded alternately grey and white so that adjacent squares have different colors. To tile a chessboard polygon by dominoes is to exactly cover the polygon by non-overlapping 1×2 rectangles. Finally, a tasteful tiling is one which avoids the two configurations of dominoes shown on the left below. Two tilings of a 3×4 rectangle are shown; the first one is tasteful, while the second is not, due to the vertical dominoes in the upper right corner.

Distasteful tilings

a) Prove that if a chessboard polygon can be tiled by dominoes, then it can be done so tastefully.
b) Prove that such a tasteful tiling is unique.

Day 2 April 29th

4 For $n \geq 2$ let $a_{1}, a_{2}, \ldots a_{n}$ be positive real numbers such that

$$
\left(a_{1}+a_{2}+\cdots+a_{n}\right)\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}\right) \leq\left(n+\frac{1}{2}\right)^{2} .
$$

Prove that $\max \left(a_{1}, a_{2}, \ldots, a_{n}\right) \leq 4 \min \left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

5 Trapezoid $A B C D$, with $\overline{A B} \| \overline{C D}$, is inscribed in circle ω and point G lies inside triangle $B C D$. Rays $A G$ and $B G$ meet ω again at points P and Q, respectively. Let the line through G parallel to $\overline{A B}$ intersects $\overline{B D}$ and $\overline{B C}$ at points R and S, respectively. Prove that quadrilateral $P Q R S$ is cyclic if and only if $\overline{B G}$ bisects $\angle C B D$.

6 Let $s_{1}, s_{2}, s_{3}, \ldots$ be an infinite, nonconstant sequence of rational numbers, meaning it is not the case that $s_{1}=s_{2}=s_{3}=\ldots$. Suppose that $t_{1}, t_{2}, t_{3}, \ldots$ is also an infinite, nonconstant sequence of rational numbers with the property that $\left(s_{i}-s_{j}\right)\left(t_{i}-t_{j}\right)$ is an integer for all i and j. Prove that there exists a rational number r such that $\left(s_{i}-s_{j}\right) r$ and $\left(t_{i}-t_{j}\right) / r$ are integers for all i and j.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

