2009 USAMO

AoPS Community

USAMO 2009

www.artofproblemsolving.com/community/c4507 by tenniskidperson3, azjps, rrusczyk

Day 1 April 28th

- **1** Given circles ω_1 and ω_2 intersecting at points X and Y, let ℓ_1 be a line through the center of ω_1 intersecting ω_2 at points P and Q and let ℓ_2 be a line through the center of ω_2 intersecting ω_1 at points R and S. Prove that if P, Q, R and S lie on a circle then the center of this circle lies on line XY.
- **2** Let *n* be a positive integer. Determine the size of the largest subset of $\{-n, -n+1, ..., n-1, n\}$ which does not contain three elements *a*, *b*, *c* (not necessarily distinct) satisfying a + b + c = 0.
- **3** We define a *chessboard polygon* to be a polygon whose sides are situated along lines of the form x = a or y = b, where a and b are integers. These lines divide the interior into unit squares, which are shaded alternately grey and white so that adjacent squares have different colors. To tile a chessboard polygon by dominoes is to exactly cover the polygon by non-overlapping 1×2 rectangles. Finally, a *tasteful tiling* is one which avoids the two configurations of dominoes shown on the left below. Two tilings of a 3×4 rectangle are shown; the first one is tasteful, while the second is not, due to the vertical dominoes in the upper right corner.

a) Prove that if a chessboard polygon can be tiled by dominoes, then it can be done so tastefully.

b) Prove that such a tasteful tiling is unique.

Day 2 April 29th

4 For $n \ge 2$ let $a_1, a_2, \dots a_n$ be positive real numbers such that $(a_1 + a_2 + \dots + a_n) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right) \le \left(n + \frac{1}{2}\right)^2$. Prove that $\max(a_1, a_2, \dots, a_n) \le 4 \min(a_1, a_2, \dots, a_n)$.

AoPS Community

2009 USAMO

- **5** Trapezoid ABCD, with $\overline{AB}||\overline{CD}$, is inscribed in circle ω and point G lies inside triangle BCD. Rays AG and BG meet ω again at points P and Q, respectively. Let the line through G parallel to \overline{AB} intersects \overline{BD} and \overline{BC} at points R and S, respectively. Prove that quadrilateral PQRS is cyclic if and only if \overline{BG} bisects $\angle CBD$.
- **6** Let s_1, s_2, s_3, \ldots be an infinite, nonconstant sequence of rational numbers, meaning it is not the case that $s_1 = s_2 = s_3 = \ldots$. Suppose that t_1, t_2, t_3, \ldots is also an infinite, nonconstant sequence of rational numbers with the property that $(s_i s_j)(t_i t_j)$ is an integer for all *i* and *j*. Prove that there exists a rational number *r* such that $(s_i s_j)r$ and $(t_i t_j)/r$ are integers for all *i* and *j*.
- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.