AoPS Community

USAMO 2011

www.artofproblemsolving.com/community/c4509
by tenniskidperson3, rrusczyk

Day 1 April 27th

1 Let a, b, c be positive real numbers such that $a^{2}+b^{2}+c^{2}+(a+b+c)^{2} \leq 4$. Prove that

$$
\frac{a b+1}{(a+b)^{2}}+\frac{b c+1}{(b+c)^{2}}+\frac{c a+1}{(c+a)^{2}} \geq 3 .
$$

2 An integer is assigned to each vertex of a regular pentagon so that the sum of the five integers is 2011. A turn of a solitaire game consists of subtracting an integer m from each of the integers at two neighboring vertices and adding $2 m$ to the opposite vertex, which is not adjacent to either of the first two vertices. (The amount m and the vertices chosen can vary from turn to turn.) The game is won at a certain vertex if, after some number of turns, that vertex has the number 2011 and the other four vertices have the number 0 . Prove that for any choice of the initial integers, there is exactly one vertex at which the game can be won.

3 In hexagon $A B C D E F$, which is nonconvex but not self-intersecting, no pair of opposite sides are parallel. The internal angles satisfy $\angle A=3 \angle D, \angle C=3 \angle F$, and $\angle E=3 \angle B$. Furthermore $A B=D E, B C=E F$, and $C D=F A$. Prove that diagonals $\overline{A D}, \overline{B E}$, and $\overline{C F}$ are concurrent.

Day 2 April 28th

4 Consider the assertion that for each positive integer $n \geq 2$, the remainder upon dividing $2^{2^{n}}$ by $2^{n}-1$ is a power of 4 . Either prove the assertion or find (with proof) a counterexample.
$5 \quad$ Let P be a given point inside quadrilateral $A B C D$. Points Q_{1} and Q_{2} are located within $A B C D$ such that

$$
\angle Q_{1} B C=\angle A B P, \quad \angle Q_{1} C B=\angle D C P, \quad \angle Q_{2} A D=\angle B A P, \quad \angle Q_{2} D A=\angle C D P .
$$

Prove that $\overline{Q_{1} Q_{2}} \| \overline{A B}$ if and only if $\overline{Q_{1} Q_{2}} \| \overline{C D}$.
6 Let A be a set with $|A|=225$, meaning that A has 225 elements. Suppose further that there are eleven subsets A_{1}, \ldots, A_{11} of A such that $\left|A_{i}\right|=45$ for $1 \leq i \leq 11$ and $\left|A_{i} \cap A_{j}\right|=9$ for $1 \leq i<j \leq 11$. Prove that $\left|A_{1} \cup A_{2} \cup \ldots \cup A_{11}\right| \geq 165$, and give an example for which equality holds.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

