AoPS Community

USAMO 2013

www.artofproblemsolving.com/community/c4511
by djmathman, tenniskidperson3, rrusczyk

Day 1 April 30th

1 In triangle $A B C$, points P, Q, R lie on sides $B C, C A, A B$ respectively. Let $\omega_{A}, \omega_{B}, \omega_{C}$ denote the circumcircles of triangles $A Q R, B R P, C P Q$, respectively. Given the fact that segment $A P$ intersects $\omega_{A}, \omega_{B}, \omega_{C}$ again at X, Y, Z, respectively, prove that $Y X / X Z=B P / P C$.

2 For a positive integer $n \geq 3$ plot n equally spaced points around a circle. Label one of them A, and place a marker at A. One may move the marker forward in a clockwise direction to either the next point or the point after that. Hence there are a total of $2 n$ distinct moves available; two from each point. Let a_{n} count the number of ways to advance around the circle exactly twice, beginning and ending at A, without repeating a move. Prove that $a_{n-1}+a_{n}=2^{n}$ for all $n \geq 4$.

3 Let n be a positive integer. There are $\frac{n(n+1)}{2}$ marks, each with a black side and a white side, arranged into an equilateral triangle, with the biggest row containing n marks. Initially, each mark has the black side up. An operation is to choose a line parallel to the sides of the triangle, and flipping all the marks on that line. A configuration is called admissible if it can be obtained from the initial configuration by performing a finite number of operations. For each admissible configuration C, let $f(C)$ denote the smallest number of operations required to obtain C from the initial configuration. Find the maximum value of $f(C)$, where C varies over all admissible configurations.

Day 2 May 1st
4 Find all real numbers $x, y, z \geq 1$ satisfying

$$
\min (\sqrt{x+x y z}, \sqrt{y+x y z}, \sqrt{z+x y z})=\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1} .
$$

$5 \quad$ Given positive integers m and n, prove that there is a positive integer c such that the numbers cm and cn have the same number of occurrences of each non-zero digit when written in base ten.
$6 \quad$ Let $A B C$ be a triangle. Find all points P on segment $B C$ satisfying the following property: If X and Y are the intersections of line $P A$ with the common external tangent lines of the circumcircles of triangles $P A B$ and $P A C$, then

$$
\left(\frac{P A}{X Y}\right)^{2}+\frac{P B \cdot P C}{A B \cdot A C}=1 .
$$

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa. org).

