AoPS Community

USAMO 2014

www.artofproblemsolving.com/community/c4512
by patrickhompe, msinghal, djmathman, tenniskidperson3, rrusczyk

Day 1 April 29th

1 Let a, b, c, d be real numbers such that $b-d \geq 5$ and all zeros x_{1}, x_{2}, x_{3}, and x_{4} of the polynomial $P(x)=x^{4}+a x^{3}+b x^{2}+c x+d$ are real. Find the smallest value the product $\left(x_{1}^{2}+1\right)\left(x_{2}^{2}+1\right)\left(x_{3}^{2}+\right.$ 1) $\left(x_{4}^{2}+1\right)$ can take.
$2 \quad$ Let \mathbb{Z} be the set of integers. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
x f(2 f(y)-x)+y^{2} f(2 x-f(y))=\frac{f(x)^{2}}{x}+f(y f(y))
$$

for all $x, y \in \mathbb{Z}$ with $x \neq 0$.
3 Prove that there exists an infinite set of points
$\ldots, P_{-3}, P_{-2}, P_{-1}, P_{0}, P_{1}, P_{2}, P_{3}, \ldots$
in the plane with the following property: For any three distinct integers a, b, and c, points P_{a}, P_{b}, and P_{c} are collinear if and only if $a+b+c=2014$.

Day 2 April 30th
$4 \quad$ Let k be a positive integer. Two players A and B play a game on an infinite grid of regular hexagons. Initially all the grid cells are empty. Then the players alternately take turns with A moving first. In his move, A may choose two adjacent hexagons in the grid which are empty and place a counter in both of them. In his move, B may choose any counter on the board and remove it. If at any time there are k consecutive grid cells in a line all of which contain a counter, A wins. Find the minimum value of k for which A cannot win in a finite number of moves, or prove that no such minimum value exists.
$5 \quad$ Let $A B C$ be a triangle with orthocenter H and let P be the second intersection of the circumcircle of triangle $A H C$ with the internal bisector of the angle $\angle B A C$. Let X be the circumcenter of triangle $A P B$ and Y the orthocenter of triangle $A P C$. Prove that the length of segment $X Y$ is equal to the circumradius of triangle $A B C$.

6 Prove that there is a constant $c>0$ with the following property: If a, b, n are positive integers such that $\operatorname{gcd}(a+i, b+j)>1$ for all $i, j \in\{0,1, \ldots n\}$, then

$$
\min \{a, b\}>c^{n} \cdot n^{\frac{n}{2}}
$$

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa. org).

