2002 Pan African

AoPS Community

Pan African 2002

www.artofproblemsolving.com/community/c4515 by shobber

Day	I
1	Find all functions $f : N_0 \to N_0$, (where N_0 is the set of all non-negative integers) such that $f(f(n)) = f(n) + 1$ for all $n \in N_0$ and the minimum of the set $\{f(0), f(1), f(2) \cdots\}$ is 1.
2	$\triangle AOB$ is a right triangle with $\angle AOB = 90^{\circ}$. <i>C</i> and <i>D</i> are moving on <i>AO</i> and <i>BO</i> respectively such that $AC = BD$. Show that there is a fixed point <i>P</i> through which the perpendicular bisector of <i>CD</i> always passes.
3	Prove for every integer $n > 0$, there exists an integer $k > 0$ such that $2^n k$ can be written in decimal notation using only digits 1 and 2.
Day 2	
4	Seven students in a class compare their marks in 12 subjects studied and observe that no two of the students have identical marks in all 12 subjects. Prove that we can choose 6 subjects such that any two of the students have different marks in at least one of these subjects.
5	Let $\triangle ABC$ be an acute angled triangle. The circle with diameter AB intersects the sides AC and BC at points E and F respectively. The tangents drawn to the circle through E and F intersect at P. Show that P lies on the altitude through the vertex C.
6	If $a_1 \ge a_2 \ge \cdots \ge a_n \ge 0$ and $a_1 + a_2 + \cdots + a_n = 1$, then prove:
	$a_1^2 + 3a_2^2 + 5a_3^2 + \dots + (2n-1)a_n^2 \le 1$

AoPS Online 🔯 AoPS Academy 🔯 AoPS & CADEMY

Art of Problem Solving is an ACS WASC Accredited School.