AoPS Community

Pan African 2002

www.artofproblemsolving.com/community/c4515
by shobber

Day 1

1 Find all functions $f: N_{0} \rightarrow N_{0}$, (where N_{0} is the set of all non-negative integers) such that $f(f(n))=f(n)+1$ for all $n \in N_{0}$ and the minimum of the set $\{f(0), f(1), f(2) \cdots\}$ is 1 .
$2 \triangle A O B$ is a right triangle with $\angle A O B=90^{\circ} . C$ and D are moving on $A O$ and $B O$ respectively such that $A C=B D$. Show that there is a fixed point P through which the perpendicular bisector of $C D$ always passes.

3 Prove for every integer $n>0$, there exists an integer $k>0$ such that $2^{n} k$ can be written in decimal notation using only digits 1 and 2 .

Day 2

4 Seven students in a class compare their marks in 12 subjects studied and observe that no two of the students have identical marks in all 12 subjects. Prove that we can choose 6 subjects such that any two of the students have different marks in at least one of these subjects.

5 Let $\triangle A B C$ be an acute angled triangle. The circle with diameter AB intersects the sides AC and $B C$ at points E and F respectively. The tangents drawn to the circle through E and F intersect at P.
Show that P lies on the altitude through the vertex C.
6 If $a_{1} \geq a_{2} \geq \cdots \geq a_{n} \geq 0$ and $a_{1}+a_{2}+\cdots+a_{n}=1$, then prove:

$$
a_{1}^{2}+3 a_{2}^{2}+5 a_{3}^{2}+\cdots+(2 n-1) a_{n}^{2} \leq 1
$$

