www.artofproblemsolving.com/community/c451627
by BartSimpsons

1 We call a 5 -tuple of integers arrangeable if its elements can be labeled a, b, c, d, e in some order so that $a-b+c-d+e=29$. Determine all 2017-tuples of integers $n_{1}, n_{2}, \ldots, n_{2017}$ such that if we place them in a circle in clockwise order, then any 5 -tuple of numbers in consecutive positions on the circle is arrangeable.

Warut Suksompong, Thailand

2 Let $A B C$ be a triangle with $A B<A C$. Let D be the intersection point of the internal bisector of angle $B A C$ and the circumcircle of $A B C$. Let Z be the intersection point of the perpendicular bisector of $A C$ with the external bisector of angle $\angle B A C$. Prove that the midpoint of the segment $A B$ lies on the circumcircle of triangle $A D Z$.
Olimpiada de Matemticas, Nicaragua
3 Let $A(n)$ denote the number of sequences $a_{1} \geq a_{2} \geq \cdots \geq a_{k}$ of positive integers for which $a_{1}+\cdots+a_{k}=n$ and each $a_{i}+1$ is a power of two $(i=1,2, \cdots, k)$. Let $B(n)$ denote the number of sequences $b_{1} \geq b_{2} \geq \cdots \geq b_{m}$ of positive integers for which $b_{1}+\cdots+b_{m}=n$ and each inequality $b_{j} \geq 2 b_{j+1}$ holds $(j=1,2, \cdots, m-1)$. Prove that $A(n)=B(n)$ for every positive integer n.
Senior Problems Committee of the Australian Mathematical Olympiad Committee
4 Call a rational number r powerful if r can be expressed in the form $\frac{p^{k}}{q}$ for some relatively prime positive integers p, q and some integer $k>1$. Let a, b, c be positive rational numbers such that $a b c=1$. Suppose there exist positive integers x, y, z such that $a^{x}+b^{y}+c^{z}$ is an integer. Prove that a, b, c are all powerful.

Jeck Lim, Singapore
$5 \quad$ Let n be a positive integer. A pair of n-tuples $\left(a_{1}, \cdots, a_{n}\right)$ and $\left(b_{1}, \cdots, b_{n}\right)$ with integer entries is called an exquisite pair if

$$
\left|a_{1} b_{1}+\cdots+a_{n} b_{n}\right| \leq 1
$$

Determine the maximum number of distinct n-tuples with integer entries such that any two of them form an exquisite pair.

Pakawut Jiradilok and Warut Suksompong, Thailand

