2017 APMO

AoPS Community

www.artofproblemsolving.com/community/c451627

by BartSimpsons

1 We call a 5-tuple of integers *arrangeable* if its elements can be labeled a, b, c, d, e in some order so that a-b+c-d+e = 29. Determine all 2017-tuples of integers $n_1, n_2, ..., n_{2017}$ such that if we place them in a circle in clockwise order, then any 5-tuple of numbers in consecutive positions on the circle is arrangeable.

Warut Suksompong, Thailand

2 Let ABC be a triangle with AB < AC. Let D be the intersection point of the internal bisector of angle BAC and the circumcircle of ABC. Let Z be the intersection point of the perpendicular bisector of AC with the external bisector of angle $\angle BAC$. Prove that the midpoint of the segment AB lies on the circumcircle of triangle ADZ.

Olimpiada de Matemticas, Nicaragua

3 Let A(n) denote the number of sequences $a_1 \ge a_2 \ge \cdots \ge a_k$ of positive integers for which $a_1 + \cdots + a_k = n$ and each $a_i + 1$ is a power of two $(i = 1, 2, \cdots, k)$. Let B(n) denote the number of sequences $b_1 \ge b_2 \ge \cdots \ge b_m$ of positive integers for which $b_1 + \cdots + b_m = n$ and each inequality $b_j \ge 2b_{j+1}$ holds $(j = 1, 2, \cdots, m - 1)$. Prove that A(n) = B(n) for every positive integer n.

Senior Problems Committee of the Australian Mathematical Olympiad Committee

4 Call a rational number *r* powerful if *r* can be expressed in the form $\frac{p^k}{q}$ for some relatively prime positive integers *p*, *q* and some integer *k* > 1. Let *a*, *b*, *c* be positive rational numbers such that abc = 1. Suppose there exist positive integers *x*, *y*, *z* such that $a^x + b^y + c^z$ is an integer. Prove that *a*, *b*, *c* are all powerful.

Jeck Lim, Singapore

5 Let *n* be a positive integer. A pair of *n*-tuples (a_1, \dots, a_n) and (b_1, \dots, b_n) with integer entries is called an *exquisite pair* if

$$|a_1b_1 + \dots + a_nb_n| \le 1.$$

Determine the maximum number of distinct *n*-tuples with integer entries such that any two of them form an exquisite pair.

Pakawut Jiradilok and Warut Suksompong, Thailand

Art of Problem Solving is an ACS WASC Accredited School.