



## **AoPS Community**

## Pan African 2005

## www.artofproblemsolving.com/community/c4518 by shobber

## Day 1 August 1st

| 1     | For any positive real numbers a, b and c, prove:                                                                                                                                                                                                                                                                                                                  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge \frac{2}{a+b} + \frac{2}{b+c} + \frac{2}{c+a} \ge \frac{9}{a+b+c}$                                                                                                                                                                                                                                                   |
| 2     | Let <i>S</i> be a set of integers with the property that any integer root of any non-zero polynomial with coefficients in <i>S</i> also belongs to <i>S</i> . If 0 and 1000 are elements of <i>S</i> , prove that $-2$ is also an element of <i>S</i> .                                                                                                           |
| 3     | Let $ABC$ be a triangle and let $P$ be a point on one of the sides of $ABC$ . Construct a line passing through $P$ that divides triangle $ABC$ into two parts of equal area.                                                                                                                                                                                      |
| Day 2 | 2 August 2nd                                                                                                                                                                                                                                                                                                                                                      |
| 1     | Let $[x]$ be the greatest integer less than or equal to $x$ , and let $\{x\} = x - [x]$ .<br>Solve the equation: $[x] \cdot \{x\} = 2005x$                                                                                                                                                                                                                        |
| 2     | Noah has to fit 8 species of animals into 4 cages of the Arc. He planes to put two species of animal in each cage. It turns out that, for each species of animal, there are at most 3 other species with which it cannot share a cage. Prove that there is a way to assign the animals to the cages so that each species shares a cage with a compatible species. |
| 3     | Let $f : \mathbb{Z} \to \mathbb{Z}$ be a function such that: For all $a$ and $b$ in $\mathbb{Z} - \{0\}$ , $f(ab) \ge f(a) + f(b)$ . Show that for all $a \in \mathbb{Z} - \{0\}$ we have $f(a^n) = nf(a)$ for all $n \in \mathbb{N}$ if and only if $f(a^2) = 2f(a)$                                                                                             |

🐼 AoPS Online 🔇 AoPS Academy 🔇 AoPS 🗱