2006 Pan African

AoPS Community

Pan African 2006

www.artofproblemsolving.com/community/c4519 by djb86

Day 1

1	Let AB and CD be two perpendicular diameters of a circle with centre O . Consider a point M on the diameter AB , different from A and B . The line CM cuts the circle again at N . The tangent at N to the circle and the perpendicular at M to AM intersect at P . Show that $OP = CM$.
•	

- **2** Let a, b, c be three non-zero integers. It is known that the sums $\frac{a}{b} + \frac{b}{c} + \frac{c}{a}$ and $\frac{b}{a} + \frac{c}{b} + \frac{a}{c}$ are integers. Find these sums.
- **3** For a real number $x \text{ let } \lfloor x \rfloor$ be the greatest integer less than or equal to x and let $\{x\} = x \lfloor x \rfloor$. If a, b, c are distinct real numbers, prove that

$$\frac{a^3}{(a-b)(a-c)} + \frac{b^3}{(b-a)(b-c)} + \frac{c^3}{(c-a)(c-b)}$$

is an integer if and only if $\{a\} + \{b\} + \{c\}$ is an integer.

Day 2	
4	For every positive integer k let $a(k)$ be the largest integer such that $2^{a(k)}$ divides k . For every positive integer n determine $a(1) + a(2) + \cdots + a(2^n)$.
5	In how many ways can the integers from 1 to 2006 be divided into three non-empty disjoint sets so that none of these sets contains a pair of consecutive integers?
6	Let ABC be a right angled triangle at A . Denote D the foot of the altitude through A and O_1, O_2 the incentres of triangles ADB and ADC . The circle with centre A and radius AD cuts AB in K and AC in L . Show that O_1, O_2, K and L are on a line.

AoPS Online AoPS Academy AoPS & Ao

Art of Problem Solving is an ACS WASC Accredited School.