AoPS Community

Pan African 2006

www.artofproblemsolving.com/community/c4519
by djb86

Day 1

1 Let $A B$ and $C D$ be two perpendicular diameters of a circle with centre O. Consider a point M on the diameter $A B$, different from A and B. The line $C M$ cuts the circle again at N. The tangent at N to the circle and the perpendicular at M to $A M$ intersect at P. Show that $O P=C M$.

2 Let a, b, c be three non-zero integers. It is known that the sums $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}$ and $\frac{b}{a}+\frac{c}{b}+\frac{a}{c}$ are integers. Find these sums.
$3 \quad$ For a real number x let $\lfloor x\rfloor$ be the greatest integer less than or equal to x and let $\{x\}=x-\lfloor x\rfloor$. If a, b, c are distinct real numbers, prove that

$$
\frac{a^{3}}{(a-b)(a-c)}+\frac{b^{3}}{(b-a)(b-c)}+\frac{c^{3}}{(c-a)(c-b)}
$$

is an integer if and only if $\{a\}+\{b\}+\{c\}$ is an integer.

Day 2

4 For every positive integer k let $a(k)$ be the largest integer such that $2^{a(k)}$ divides k. For every positive integer n determine $a(1)+a(2)+\cdots+a\left(2^{n}\right)$.

5 In how many ways can the integers from 1 to 2006 be divided into three non-empty disjoint sets so that none of these sets contains a pair of consecutive integers?
$6 \quad$ Let $A B C$ be a right angled triangle at A. Denote D the foot of the altitude through A and O_{1}, O_{2} the incentres of triangles $A D B$ and $A D C$. The circle with centre A and radius $A D$ cuts $A B$ in K and $A C$ in L. Show that O_{1}, O_{2}, K and L are on a line.

