2007 Pan African

AoPS Community

Pan African 2007

www.artofproblemsolving.com/community/c4520 by djb86

Day	1
1	Find all natural numbers N consisting of exactly 1112 digits (in decimal notation) such that: (a) The sum of the digits of N is divisible by 2000; (b) The sum of the digits of $N + 1$ is divisible by 2000; (c) 1 is a digit of N .
2	Let A, B and C be three fixed points, not on the same line. Consider all triangles $AB'C'$ where B' moves on a given straight line (not containing A), and C' is determined such that $\angle B' = \angle B$ and $\angle C' = \angle C$. Find the locus of C'.
3	In a country, towns are connected by roads. Each town is directly connected to exactly three other towns. Show that there exists a town from which you can make a round-trip, without using the same road more than once, and for which the number of roads used is not divisible by 3. (Not all towns need to be visited.)
Day	2
1	Solve the following system of equations for real x, y and z :
	$x = \sqrt{2y+3}$ $y = \sqrt{2z+3}$ $z = \sqrt{2x+3}.$

2	For which positive integers n is $231^n - 222^n - 8^n - 1$ divisible by 2007?	
---	---	--

3 An equilateral triangle of side length 2 is divided into four pieces by two perpendicular lines that intersect in the centroid of the triangle. What is the maximum possible area of a piece?

Art of Problem Solving is an ACS WASC Accredited School.