2008 Pan African

AoPS Community

Pan African 2008

www.artofproblemsolving.com/community/c4521 by WakeUp

Day 1

1	Determine all functions $f : \mathbb{R} \to \mathbb{R}$ satisfying $f(x+y) \leq f(x) + f(y) \leq x + y$ for all $x, y \in \mathbb{R}$.
2	Let C_1 be a circle with centre O , and let AB be a chord of the circle that is not a diameter. M is the midpoint of AB . Consider a point T on the circle C_2 with diameter OM . The tangent to C_2 at the point T intersects C_1 at two points. Let P be one of these points. Show that $PA^2 + PB^2 = 4PT^2$.
3	Let a, b, c be three positive integers such that $a < b < c$. Consider the the sets A, B, C and X , defined as follows: $A = \{1, 2,, a\}$, $B = \{a + 1, a + 2,, b\}$, $C = \{b + 1, b + 2,, c\}$ and $X = A \cup B \cup C$. Determine, in terms of a, b and c , the number of ways of placing the elements of X in three boxes such that there are x, y and z elements in the first, second and third box respectively, knowing that: i) $x \le y \le z$; ii) elements of B cannot be put in the first box; iii) elements of C cannot be put in the third box.
Day 2	
1	Let x and y be two positive reals. Prove that $xy \leq \frac{x^{n+2}+y^{n+2}}{x^n+y^n}$ for all non-negative integers n.
2	A set of positive integers X is called <i>connected</i> if $ X \ge 2$ and there exist two distinct elements m and n of X such that m is a divisor of n . Determine the number of connected subsets of the set $\{1, 2,, 10\}$.

3 Prove that for all positive integers n, there exists a positive integer m which is a multiple of n and the sum of the digits of m is equal to n.

Act of Problem Solving is an ACS WASC Accredited School.