AoPS Community

Pan African 2008

www.artofproblemsolving.com/community/c4521
by WakeUp

Day 1

1 Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $f(x+y) \leq f(x)+f(y) \leq x+y$ for all $x, y \in \mathbb{R}$.
2 Let C_{1} be a circle with centre O, and let $A B$ be a chord of the circle that is not a diameter. M is the midpoint of $A B$. Consider a point T on the circle C_{2} with diameter $O M$. The tangent to C_{2} at the point T intersects C_{1} at two points. Let P be one of these points. Show that $P A^{2}+P B^{2}=4 P T^{2}$.

3 Let a, b, c be three positive integers such that $a<b<c$. Consider the the sets A, B, C and X, defined as follows: $A=\{1,2, \ldots, a\}, B=\{a+1, a+2, \ldots, b\}, C=\{b+1, b+2, \ldots, c\}$ and $X=A \cup B \cup C$.
Determine, in terms of a, b and c, the number of ways of placing the elements of X in three boxes such that there are x, y and z elements in the first, second and third box respectively, knowing that:
i) $x \leq y \leq z$;
ii) elements of B cannot be put in the first box;
iii) elements of C cannot be put in the third box.

Day 2

1 Let x and y be two positive reals. Prove that $x y \leq \frac{x^{n+2}+y^{n+2}}{x^{n}+y^{n}}$ for all non-negative integers n.
2 A set of positive integers X is called connected if $|X| \geq 2$ and there exist two distinct elements m and n of X such that m is a divisor of n.
Determine the number of connected subsets of the set $\{1,2, \ldots, 10\}$.
3 Prove that for all positive integers n, there exists a positive integer m which is a multiple of n and the sum of the digits of m is equal to n.

