AoPS Community

Pan African 2010

www.artofproblemsolving.com/community/c4523
by WakeUp

Day 1

1 a) Show that it is possible to pair off the numbers $1,2,3, \ldots, 10$ so that the sums of each of the five pairs are five different prime numbers.
b) Is it possible to pair off the numbers $1,2,3, \ldots, 20$ so that the sums of each of the ten pairs are ten different prime numbers?

2 How many ways are there to line up 19 girls (all of different heights) in a row so that no girl has a shorter girl both in front of and behind her?

3 In an acute-angled triangle $A B C, C F$ is an altitude, with F on $A B$, and $B M$ is a median, with M on $C A$. Given that $B M=C F$ and $\angle M B C=\angle F C A$, prove that triangle $A B C$ is equilateral.

Day 2

1 Seven distinct points are marked on a circle of circumference c. Three of the points form an equilateral triangle and the other four form a square. Prove that at least one of the seven arcs into which the seven points divide the circle has length less than or equal $\frac{c}{24}$.

2 A sequence $a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots$ of positive integers is constructed as follows:
-if the last digit of a_{n} is less than or equal to 5 then this digit is deleted and a_{n+1} is the number consisting of the remaining digits. (If a_{n+1} contains no digits the process stops.)
-otherwise $a_{n+1}=9 a_{n}$.
Can one choose a_{0} so that an infinite sequence is obtained?
3 Does there exist a function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that $f(x+f(y))=f(x)-y$ for all integers x and y ?

