AoPS Community

Pan African 2013

www.artofproblemsolving.com/community/c4525
by djb86

Day 1 June 28th
1 A positive integer n is such that $n(n+2013)$ is a perfect square.
a) Show that n cannot be prime.
b) Find a value of n such that $n(n+2013)$ is a perfect square.

2 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x) f(y)+f(x+y)=x y$ for all real numbers x and y.
3 Let $A B C D E F$ be a convex hexagon with $\angle A=\angle D$ and $\angle B=\angle E$. Let K and L be the midpoints of the sides $A B$ and $D E$ respectively. Prove that the sum of the areas of triangles $F A K, K C B$ and $C F L$ is equal to half of the area of the hexagon if and only if

$$
\frac{B C}{C D}=\frac{E F}{F A} .
$$

Day 2

1 Let $A B C D$ be a convex quadrilateral with $A B$ parallel to $C D$. Let P and Q be the midpoints of $A C$ and $B D$, respectively. Prove that if $\angle A B P=\angle C B D$, then $\angle B C Q=\angle A C D$.

2 The cells of an $n \times n$ board with $n \geq 5$ are coloured black or white so that no three adjacent squares in a row, column or diagonal are the same colour. Show that for any 3×3 square within the board, two of its corner squares are coloured black and two are coloured white.

3 Let x, y, and z be real numbers such that $x<y<z<6$. Solve the system of inequalities:

$$
\left\{\begin{array}{c}
\frac{1}{y-x}+\frac{1}{z-y} \leq 2 \\
\frac{1}{6-z}+2 \leq x
\end{array}\right.
$$

