AoPS Community

IberoAmerican 1985

www.artofproblemsolving.com/community/c4526
by carlosbr

Day 1

1 Find all the triples of integers (a, b, c) such that:

$$
\begin{array}{ccc}
a+b+c & =24 \\
a^{2}+b^{2}+c^{2} & =210 \\
a b c & =440
\end{array}
$$

2 Let P be a point in the interior of the equilateral triangle $\triangle A B C$ such that $P A=5, P B=7$, $P C=8$. Find the length of the side of the triangle $A B C$.

3 Find all the roots r_{1}, r_{2}, r_{3} y r_{4} of the equation $4 x^{4}-a x^{3}+b x^{2}-c x+5=0$, knowing that they are real, positive and that:

$$
\frac{r_{1}}{2}+\frac{r_{2}}{4}+\frac{r_{3}}{5}+\frac{r_{4}}{8}=1 .
$$

Day 2

1 If $x \neq 1, y \neq 1, x \neq y$ and

$$
\frac{y z-x^{2}}{1-x}=\frac{x z-y^{2}}{1-y}
$$

show that both fractions are equal to $x+y+z$.
2 To each positive integer n it is assigned a non-negative integer $f(n)$ such that the following conditions are satisfied:
(1) $f(r s)=f(r)+f(s)$
(2) $f(n)=0$, if the first digit (from right to left) of n is 3 .
(3) $f(10)=0$.

Find $f(1985)$. Justify your answer.
3 Given an acute triangle $A B C$, let D, E and F be points in the lines $B C, A C$ and $A B$ respectively. If the lines $A D, B E$ and $C F$ pass through O the centre of the circumcircle of the triangle $A B C$, whose radius is R, show that:

$$
\frac{1}{A D}+\frac{1}{B E}+\frac{1}{C F}=\frac{2}{R}
$$

