

AoPS Community

IberoAmerican 1985

www.artofproblemsolving.com/community/c4526 by carlosbr

Day 1	
1	Find all the triples of integers (a, b, c) such that:
	$a+b+c = 24$ $a^2+b^2+c^2 = 210$ $abc = 440$
2	Let <i>P</i> be a point in the interior of the equilateral triangle $\triangle ABC$ such that $PA = 5$, $PB = 7$ PC = 8. Find the length of the side of the triangle <i>ABC</i> .
3	Find all the roots r_1 , r_2 , r_3 y r_4 of the equation $4x^4 - ax^3 + bx^2 - cx + 5 = 0$, knowing that they are real, positive and that: $\frac{r_1}{2} + \frac{r_2}{4} + \frac{r_3}{5} + \frac{r_4}{8} = 1.$
Day 2	
1	If $x \neq 1, y \neq 1, x \neq y$ and $\frac{yz - x^2}{1 - x} = \frac{xz - y^2}{1 - y}$ show that both fractions are equal to $x + y + z$
	show that both fractions are equal to $x + y + z$.
2	To each positive integer n it is assigned a non-negative integer $f(n)$ such that the following conditions are satisfied:
	(1) $f(rs) = f(r) + f(s)$ (2) $f(n) = 0$, if the first digit (from right to left) of <i>n</i> is 3. (3) $f(10) = 0$.
	Find $f(1985)$. Justify your answer.
3	Given an acute triangle ABC , let D , E and F be points in the lines BC , AC and AB respectively. If the lines AD , BE and CF pass through O the centre of the circumcircle of the triangle ABC whose radius is R , show that:

$$\frac{1}{AD} + \frac{1}{BE} + \frac{1}{CF} = \frac{2}{R}$$

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱