Art of Problem Solving

AoPS Community

IberoAmerican 1987

www.artofproblemsolving.com/community/c4527
by WakeUp, rem

Day 1

1 Find the function $f(x)$ such that

$$
f(x)^{2} f\left(\frac{1-x}{x+1}\right)=64 x
$$

for $x \neq 0, x \neq 1, x \neq-1$.
2 In a triangle $A B C, M$ and N are the respective midpoints of the sides $A C$ and $A B$, and P is the point of intersection of $B M$ and $C N$. Prove that, if it is possible to inscribe a circle in the quadrilateral $A M P N$, then the triangle $A B C$ is isosceles.

3 Prove that if m, n, r are positive integers, and:

$$
1+m+n \sqrt{3}=(2+\sqrt{3})^{2 r-1}
$$

then m is a perfect square.

Day 2

1 The sequence $\left(p_{n}\right)$ is defined as follows: $p_{1}=2$ and for all n greater than or equal to $2, p_{n}$ is the largest prime divisor of the expression $p_{1} p_{2} p_{3} \ldots p_{n-1}+1$.
Prove that every p_{n} is different from 5 .
2 Let r, s, t be the roots of the equation $x(x-2)(3 x-7)=2$. Show that r, s, t are real and positive and determine $\arctan r+\arctan s+\arctan t$.

3 Let $A B C D$ be a convex quadrilateral and let P and Q be the points on the sides $A D$ and $B C$ respectively such that $\frac{A P}{P D}=\frac{B Q}{Q C}=\frac{A B}{C D}$.
Prove that the line $P Q$ forms equal angles with the lines $A B$ and $C D$.

