

AoPS Community

IberoAmerican 1987

www.artofproblemsolving.com/community/c4527 by WakeUp, rem

Day 1

1 Find the function f(x) such that

$$f(x)^2 f\left(\frac{1-x}{x+1}\right) = 64x$$

for $x \neq 0, x \neq 1, x \neq -1$.

- 2 In a triangle *ABC*, *M* and *N* are the respective midpoints of the sides *AC* and *AB*, and *P* is the point of intersection of *BM* and *CN*. Prove that, if it is possible to inscribe a circle in the quadrilateral *AMPN*, then the triangle *ABC* is isosceles.
- **3** Prove that if m, n, r are positive integers, and:

$$1 + m + n\sqrt{3} = (2 + \sqrt{3})^{2r-1}$$

then m is a perfect square.

Day 2 1 The sequence (p_n) is defined as follows: p₁ = 2 and for all n greater than or equal to 2, p_n is the largest prime divisor of the expression p₁p₂p₃...p_{n-1} + 1. Prove that every p_n is different from 5. 2 Let r, s, t be the roots of the equation x(x-2)(3x-7) = 2. Show that r, s, t are real and positive and determine arctan r + arctan s + arctan t.

3 Let ABCD be a convex quadrilateral and let P and Q be the points on the sides AD and BC respectively such that $\frac{AP}{PD} = \frac{BQ}{QC} = \frac{AB}{CD}$. Prove that the line PQ forms equal angles with the lines AB and CD.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱