AoPS Community

IberoAmerican 1989

www.artofproblemsolving.com/community/c4529
by WakeUp

Day 1

1 Determine all triples of real numbers that satisfy the following system of equations:

$$
x+y-z=-1 x^{2}-y^{2}+z^{2}=1-x^{3}+y^{3}+z^{3}=-1
$$

2 Let x, y, z be real numbers such that $0 \leq x, y, z \leq \frac{\pi}{2}$. Prove the inequality

$$
\frac{\pi}{2}+2 \sin x \cos y+2 \sin y \cos z \geq \sin 2 x+\sin 2 y+\sin 2 z
$$

3 Let a, b and c be the side lengths of a triangle. Prove that:

$$
\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}<\frac{1}{16}
$$

Day 2

1 The incircle of the triangle $A B C$ is tangent to sides $A C$ and $B C$ at M and N, respectively. The bisectors of the angles at A and B intersect $M N$ at points P and Q, respectively. Let O be the incentre of $\triangle A B C$. Prove that $M P \cdot O A=B C \cdot O Q$.

2 Let the function f be defined on the set \mathbb{N} such that
(i) $\quad f(1)=1$ (ii) $\quad f(2 n+1)=f(2 n)+1$ (iii) $f(2 n)=3 f(n)$

Determine the set of values taken f.
3 Show that the equation $2 x^{2}-3 x=3 y^{2}$ has infinitely many solutions in positive integers.

