AoPS Community

IberoAmerican 1990

www.artofproblemsolving.com/community/c4530
by Jutaro

Day 1 September 24th

1 Let f be a function defined for the non-negative integers, such that:
a) $f(n)=0$ if $n=2^{j}-1$ for some $j \geq 0$.
b) $f(n+1)=f(n)-1$ otherwise.
i) Show that for every $n \geq 0$ there exists $k \geq 0$ such that $f(n)+n=2^{k}-1$.
ii) Find $f\left(2^{1990}\right)$.

2 Let $A B C$ be a triangle. I is the incenter, and the incircle is tangent to $B C, C A, A B$ at D, E, F, respectively. P is the second point of intersection of $A D$ and the incircle. If M is the midpoint of $E F$, show that P, I, M, D are concyclic.

3 Let b, c be integer numbers, and define $f(x)=(x+b)^{2}-c$.
i) If p is a prime number such that c is divisible by p but not by p^{2}, show that for every integer $n, f(n)$ is not divisible by p^{2}.
ii) Let $q \neq 2$ be a prime divisor of c. If q divides $f(n)$ for some integer n, show that for every integer r there exists an integer n^{\prime} such that $f\left(n^{\prime}\right)$ is divisible by $q r$.

Day 2 September 25th
$4 \quad$ Let Γ_{1} be a circle. $A B$ is a diameter, ℓ is the tangent at B, and M is a point on Γ_{1} other than A. Γ_{2} is a circle tangent to ℓ, and also to Γ_{1} at M.
a) Determine the point of tangency P of ℓ and Γ_{2} and find the locus of the center of Γ_{2} as M varies.
b) Show that there exists a circle that is always orthogonal to Γ_{2}, regardless of the position of M.
$5 \quad A$ and B are two opposite vertices of an $n \times n$ board. Within each small square of the board, the diagonal parallel to $A B$ is drawn, so that the board is divided in $2 n^{2}$ equal triangles. A coin moves from A to B along the grid, and for every segment of the grid that it visits, a seed is put in each triangle that contains the segment as a side. The path followed by the coin is such that no segment is visited more than once, and after the coins arrives at B, there are exactly
two seeds in each of the $2 n^{2}$ triangles of the board. Determine all the values of n for which such scenario is possible.

6 Let $f(x)$ be a cubic polynomial with rational coefficients. If the graph of $f(x)$ is tangent to the x axis, prove that the roots of $f(x)$ are all rational.

