AoPS Community

IberoAmerican 1991

www.artofproblemsolving.com/community/c4531
by Jutaro, conan_naruto236, pontios

1 Each vertex of a cube is assigned an 1 or a -1, and each face is assigned the product of the numbers assigned to its vertices. Determine the possible values the sum of these 14 numbers can attain.

2 A square is divided in four parts by two perpendicular lines, in such a way that three of these parts have areas equal to 1 . Show that the square has area equal to 4 .

3 Let $f:[0,1] \rightarrow \mathbb{R}$ be an increasing function satisfying the following conditions:
a) $f(0)=0$;
b) $f\left(\frac{x}{3}\right)=\frac{f(x)}{2}$;
c) $f(1-x)=1-f(x)$.

Determine $f\left(\frac{18}{1991}\right)$.
4 Find a positive integer n with five non-zero different digits, which satisfies to be equal to the sum of all the three-digit numbers that can be formed using the digits of n.

5 Let $P(x, y)=2 x^{2}-6 x y+5 y^{2}$. Let us say an integer number a is a value of P if there exist integer numbers b, c such that $P(b, c)=a$.
a) Find all values of P lying between 1 and 100 .
b) Show that if r and s are values of P, then so is $r s$.

6 Let M, N and P be three non-collinear points. Construct using straight edge and compass a triangle for which M and N are the midpoints of two of its sides, and P is its orthocenter.

