AoPS Community

IberoAmerican 1992

www.artofproblemsolving.com/community/c4532
by Jutaro

Day 1 September 21st

1 For every positive integer n we define a_{n} as the last digit of the sum $1+2+\cdots+n$. Compute $a_{1}+a_{2}+\cdots+a_{1992}$.

2 Given the positive real numbers $a_{1}<a_{2}<\cdots<a_{n}$, consider the function

$$
f(x)=\frac{a_{1}}{x+a_{1}}+\frac{a_{2}}{x+a_{2}}+\cdots+\frac{a_{n}}{x+a_{n}}
$$

Determine the sum of the lengths of the disjoint intervals formed by all the values of x such that $f(x)>1$.

3 Let $A B C$ be an equilateral triangle of sidelength 2 and let ω be its incircle.
a) Show that for every point P on ω the sum of the squares of its distances to A, B, C is 5.
b) Show that for every point P on ω it is possible to construct a triangle of sidelengths $A P$, $B P, C P$. Also, the area of such triangle is $\frac{\sqrt{3}}{4}$.

Day 2 September 22nd
1 Let $\left\{a_{n}\right\}_{n \geq 0}$ and $\left\{b_{n}\right\}_{n \geq 0}$ be two sequences of integer numbers such that:
i. $a_{0}=0, b_{0}=8$.
ii. For every $n \geq 0, a_{n+2}=2 a_{n+1}-a_{n}+2, b_{n+2}=2 b_{n+1}-b_{n}$.
iii. $a_{n}^{2}+b_{n}^{2}$ is a perfect square for every $n \geq 0$.

Find at least two values of the pair $\left(a_{1992}, b_{1992}\right)$.
2 Given a circle Γ and the positive numbers h and m, construct with straight edge and compass a trapezoid inscribed in Γ, such that it has altitude h and the sum of its parallel sides is m.

3 In a triangle $A B C$, points A_{1} and A_{2} are chosen in the prolongations beyond A of segments $A B$ and $A C$, such that $A A_{1}=A A_{2}=B C$. Define analogously points $B_{1}, B_{2}, C_{1}, C_{2}$. If $[A B C]$ denotes the area of triangle $A B C$, show that $\left[A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}\right] \geq 13[A B C]$.

