

AoPS Community

IberoAmerican 1992

www.artofproblemsolving.com/community/c4532 by Jutaro

Day 1 September 21st

1 For every positive integer n we define a_n as the last digit of the sum $1 + 2 + \cdots + n$. Compute $a_1 + a_2 + \cdots + a_{1992}$.

2 Given the positive real numbers $a_1 < a_2 < \cdots < a_n$, consider the function

1

$$f(x) = \frac{a_1}{x+a_1} + \frac{a_2}{x+a_2} + \dots + \frac{a_n}{x+a_n}$$

Determine the sum of the lengths of the disjoint intervals formed by all the values of x such that f(x) > 1.

3 Let ABC be an equilateral triangle of sidelength 2 and let ω be its incircle.

a) Show that for every point P on ω the sum of the squares of its distances to A, B, C is 5.

b) Show that for every point P on ω it is possible to construct a triangle of sidelengths AP, BP, CP. Also, the area of such triangle is $\frac{\sqrt{3}}{4}$.

Day 2 September 22nd

1 Let $\{a_n\}_{n\geq 0}$ and $\{b_n\}_{n\geq 0}$ be two sequences of integer numbers such that:

i. $a_0 = 0$, $b_0 = 8$.

ii. For every $n \ge 0$, $a_{n+2} = 2a_{n+1} - a_n + 2$, $b_{n+2} = 2b_{n+1} - b_n$.

iii. $a_n^2 + b_n^2$ is a perfect square for every $n \ge 0$.

Find at least two values of the pair (a_{1992}, b_{1992}) .

2 Given a circle Γ and the positive numbers h and m, construct with straight edge and compass a trapezoid inscribed in Γ , such that it has altitude h and the sum of its parallel sides is m.

3 In a triangle ABC, points A_1 and A_2 are chosen in the prolongations beyond A of segments AB and AC, such that $AA_1 = AA_2 = BC$. Define analogously points B_1 , B_2 , C_1 , C_2 . If [ABC] denotes the area of triangle ABC, show that $[A_1A_2B_1B_2C_1C_2] \ge 13[ABC]$.

1992 IberoAmerican

Act of Problem Solving is an ACS WASC Accredited School.