1993 IberoAmerican

AoPS Community

IberoAmerican 1993

www.artofproblemsolving.com/community/c4533 by carlosbr

Day 1	
1	A number is called <i>capicua</i> if when it is written in decimal notation, it can be read equal from left to right as from right to left; for example: 8, 23432, 6446. Let $x_1 < x_2 < \cdots < x_i < x_{i+1}, \cdots$ be the sequence of all capicua numbers. For each <i>i</i> define $y_i = x_{i+1} - x_i$. How many distinct primes contains the set $\{y_1, y_2, \ldots\}$?
2	Show that for every convex polygon whose area is less than or equal to 1 , there exists a paral- lelogram with area 2 containing the polygon.
3	Let $\mathbb{N}^* = \{1, 2, \ldots\}$. Find al the functions $f : \mathbb{N}^* \to \mathbb{N}^*$ such that:
	(1) If $x < y$ then $f(x) < f(y)$. (2) $f(yf(x)) = x^2 f(xy)$ for all $x, y \in \mathbb{N}^*$.
Day 2	
1	Let <i>ABC</i> be an equilateral triangle and Γ its incircle. If <i>D</i> and <i>E</i> are points on the segments <i>AB</i> and <i>AC</i> such that <i>DE</i> is tangent to Γ , show that $\frac{AD}{DB} + \frac{AE}{EC} = 1$.
2	Let <i>P</i> and <i>Q</i> be two distinct points in the plane. Let us denote by $m(PQ)$ the segment bisector of <i>PQ</i> . Let <i>S</i> be a finite subset of the plane, with more than one element, that satisfies the following properties: (i) If <i>P</i> and <i>Q</i> are in <i>S</i> , then $m(PQ)$ intersects <i>S</i> . (ii) If P_1Q_1, P_2Q_2, P_3Q_3 are three different segments such that its endpoints are points of <i>S</i> , then, there is non point in <i>S</i> such that it intersects the three lines $m(P_1Q_1), m(P_2Q_2)$, and $m(P_3Q_3)$. Find the number of points that <i>S</i> may contain.
3	Two nonnegative integers a and b are <i>tuanis</i> if the decimal expression of $a + b$ contains only 0 and 1 as digits. Let A and B be two infinite sets of non negative integers such that B is the set of all the <i>tuanis</i> numbers to elements of the set A and A the set of all the <i>tuanis</i> numbers to elements of the set A and B there is an infinite number

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🗱

of pairs (x, y) such that x - y = 1.