Art of Problem Solving

AoPS Community

IberoAmerican 1993

www.artofproblemsolving.com/community/c4533
by carlosbr

Day 1

1 A number is called capicua if when it is written in decimal notation, it can be read equal from left to right as from right to left; for example: $8,23432,6446$. Let $x_{1}<x_{2}<\cdots<x_{i}<x_{i+1}, \cdots$ be the sequence of all capicua numbers. For each i define $y_{i}=x_{i+1}-x_{i}$. How many distinct primes contains the set $\left\{y_{1}, y_{2}, \ldots\right\}$?

2 Show that for every convex polygon whose area is less than or equal to 1, there exists a parallelogram with area 2 containing the polygon.
$3 \quad$ Let $\mathbb{N}^{*}=\{1,2, \ldots\}$. Find al the functions $f: \mathbb{N}^{*} \rightarrow \mathbb{N}^{*}$ such that:
(1) If $x<y$ then $f(x)<f(y)$.
(2) $f(y f(x))=x^{2} f(x y)$ for all $x, y \in \mathbb{N}^{*}$.

Day 2

1 Let $A B C$ be an equilateral triangle and Γ its incircle. If D and E are points on the segments $A B$ and $A C$ such that $D E$ is tangent to Γ, show that $\frac{A D}{D B}+\frac{A E}{E C}=1$.

2 Let P and Q be two distinct points in the plane. Let us denote by $m(P Q)$ the segment bisector of $P Q$. Let S be a finite subset of the plane, with more than one element, that satisfies the following properties:
(i) If P and Q are in S, then $m(P Q)$ intersects S.
(ii) If $P_{1} Q_{1}, P_{2} Q_{2}, P_{3} Q_{3}$ are three diferent segments such that its endpoints are points of S, then, there is non point in S such that it intersects the three lines $m\left(P_{1} Q_{1}\right), m\left(P_{2} Q_{2}\right)$, and $m\left(P_{3} Q_{3}\right)$.
Find the number of points that S may contain.
3 Two nonnegative integers a and b are tuanis if the decimal expression of $a+b$ contains only 0 and 1 as digits. Let A and B be two infinite sets of non negative integers such that B is the set of all the tuanis numbers to elements of the set A and A the set of all the tuanis numbers to elements of the set B. Show that in at least one of the sets A and B there is an infinite number of pairs (x, y) such that $x-y=1$.

