1995 IberoAmerican

AoPS Community

IberoAmerican 1995

www.artofproblemsolving.com/community/c4535 by carlosbr, Pascual2005, parmenides51

Day 1	
1	Find all the possible values of the sum of the digits of all the perfect squares. [Commented by djimenez] Comment: I would rewrite it as follows: Let $f : \mathbb{N} \to \mathbb{N}$ such that $f(n)$ is the sum of all the digits of the number n^2 . Find the image of f (where, by image it is understood the set of all x such that exists an n with $f(n) = x$).
2	Let <i>n</i> be a positive integer greater than 1. Determine all the collections of real numbers x_1, x_2, \ldots, x_n 1 and $x_{n+1} \leq 0$ such that the next two conditions hold: (i) $x_1^{\frac{1}{2}} + x_2^{\frac{3}{2}} + \cdots + x_n^{n-\frac{1}{2}} = nx_{n+1}^{\frac{1}{2}}$ (ii) $\frac{x_1 + x_2 + \cdots + x_n}{n} = x_{n+1}$
3	Let r and s two orthogonal lines that does not lay on the same plane. Let AB be their common perpendicular, where $A \in r$ and $B \in s(*)$.Consider the sphere of diameter AB . The points $M \in r$ and $N \in s$ varies with the condition that MN is tangent to the sphere on the point T . Find the locus of T . Note: The plane that contains B and r is perpendicular to s .
Day 2	
1	In a $m \times n$ grid are there are token. Every token <i>dominates</i> every square on its same row (\leftrightarrow), its same column (\uparrow), and diagonal (\searrow)(Note that the token does not <i>dominate</i> the diagonal (\swarrow), determine the lowest number of tokens that must be on the board to <i>dominate</i> all the squares on the board.
2	The incircle of a triangle ABC touches the sides BC , CA , AB at the points D , E , F respectively. Let the line AD intersect this incircle of triangle ABC at a point X (apart from D). Assume that

- Let the line AD intersect this incircle of triangle ABC at a point X (apart from D). Assume that this point X is the midpoint of the segment AD, this means, AX = XD. Let the line BX meet the incircle of triangle ABC at a point Y (apart from X), and let the line CX meet the incircle of triangle ABC at a point Z (apart from X). Show that EY = FZ.
- **3** A function $f : N \to N$ is circular if for every $p \in N$ there exists $n \in N$, $n \le p$ such that $f^n(p) = p$ (*f* composed with itself *n* times) The function *f* has repulsion degree k > 0 if for every $p \in N$

AoPS Community

 $f^i(p) \neq p$ for every $i = 1, 2, ..., \lfloor kp \rfloor$. Determine the maximum repulsion degree can have a circular function.

Note: Here $\lfloor x \rfloor$ is the integer part of x.

AoPS Online 🔯 AoPS Academy 🗿 AoPS 🍪