AoPS Community

1995 IberoAmerican

IberoAmerican 1995

www.artofproblemsolving.com/community/c4535
by carlosbr, Pascual2005, parmenides51

Day 1

1 Find all the possible values of the sum of the digits of all the perfect squares.
[Commented by djimenez]
Comment: I would rewrite it as follows:
Let $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(n)$ is the sum of all the digits of the number n^{2}. Find the image of f (where, by image it is understood the set of all x such that exists an n with $f(n)=x$).

2 Let n be a positive integer greater than 1. Determine all the collections of real numbers $x_{1}, x_{2}, \ldots, x_{n} \geq$ 1 and $x_{n+1} \leq 0$ such that the next two conditions hold:
(i) $x_{1}^{\frac{1}{2}}+x_{2}^{\frac{3}{2}}+\cdots+x_{n}^{n-\frac{1}{2}}=n x_{n+1}^{\frac{1}{2}}$
(ii) $\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}=x_{n+1}$

3 Let r and s two orthogonal lines that does not lay on the same plane. Let $A B$ be their common perpendicular, where $A \in r$ and $B \in s(*)$.Consider the sphere of diameter $A B$. The points $M \in r$ and $N \in s$ varies with the condition that $M N$ is tangent to the sphere on the point T. Find the locus of T.

Note: The plane that contains B and r is perpendicular to s.

Day 2

1 In a $m \times n$ grid are there are token. Every token dominates every square on its same row (\leftrightarrow), its same column (\uparrow), and diagonal (Note that the token does not dominate the diagonal (\square), determine the lowest number of tokens that must be on the board to dominate all the squares on the board.

2 The incircle of a triangle $A B C$ touches the sides $B C, C A, A B$ at the points D, E, F respectively. Let the line $A D$ intersect this incircle of triangle $A B C$ at a point X (apart from D). Assume that this point X is the midpoint of the segment $A D$, this means, $A X=X D$. Let the line $B X$ meet the incircle of triangle $A B C$ at a point Y (apart from X), and let the line $C X$ meet the incircle of triangle $A B C$ at a point Z (apart from X). Show that $E Y=F Z$.

3 A function $f: N \rightarrow N$ is circular if for every $p \in N$ there exists $n \in N, n \leq p$ such that $f^{n}(p)=p$ (f composed with itself n times) The function f has repulsion degree $k>0$ if for every $p \in N$
$f^{i}(p) \neq p$ for every $i=1,2, \ldots,\lfloor k p\rfloor$. Determine the maximum repulsion degree can have a circular function.

Note: Here $\lfloor x\rfloor$ is the integer part of x.

