AoPS Community

IberoAmerican 1997

www.artofproblemsolving.com/community/c4537
by parmenides51, carlosbr

Day 1

1 Let $r \geq 1$ be a real number that holds with the property that for each pair of positive integer numbers m and n, with n a multiple of m, it is true that $\lfloor n r\rfloor$ is multiple of $\lfloor m r\rfloor$. Show that r has to be an integer number.

Note: If x is a real number, $\lfloor x\rfloor$ is the greatest integer lower than or equal to x.
2 In a triangle $A B C$, it is drawn a circumference with center in the incenter I and that meet twice each of the sides of the triangle: the segment $B C$ on D and P (where D is nearer two B); the segment $C A$ on E and Q (where E is nearer to C); and the segment $A B$ on F and R (where F is nearer to A).

Let S be the point of intersection of the diagonals of the quadrilateral $E Q F R$. Let T be the point of intersection of the diagonals of the quadrilateral $F R D P$. Let U be the point of intersection of the diagonals of the quadrilateral $D P E Q$.

Show that the circumcircle to the triangle $\triangle F R T, \triangle D P U$ and $\triangle E Q S$ have a unique point in common.
$3 \quad$ Let $n \geq 2$ be an integer number and D_{n} the set of all the points (x, y) in the plane such that its coordinates are integer numbers with: $-n \leq x \leq n$ and $-n \leq y \leq n$.
(a) There are three possible colors in which the points of D_{n} are painted with (each point has a unique color). Show that with
any distribution of the colors, there are always two points of D_{n} with the same color such that the line that contains them does not go through any other point of D_{n}.
(b) Find a way to paint the points of D_{n} with 4 colors such that if a line contains exactly two points of D_{n}, then, this points have different colors.

Day 2

1 Let n be a positive integer. Consider the sum $x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}$, where that values of the variables $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}$ are either 0 or 1 .

Let $I(n)$ be the number of $2 n$-tuples $\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}\right)$ such that the sum of the number is odd, and let $P(n)$ be the number of $2 n$-tuples $\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}\right)$ such that the sum is an even number. Show that:

$$
\frac{P(n)}{I(n)}=\frac{2^{n}+1}{2^{n}-1}
$$

2 In an acute triangle $\triangle A B C$, let $A E$ and $B F$ be highs of it, and H its orthocenter. The symmetric line of $A E$ with respect to the angle bisector of $\varangle A$ and the symmetric line of $B F$ with respect to the angle bisector of $\varangle B$ intersect each other on the point O. The lines $A E$ and $A O$ intersect again the circuncircle to $\triangle A B C$ on the points M and N respectively.

Let P be the intersection of $B C$ with $H N$; R the intersection of $B C$ with $O M$; and S the intersection of $H R$ with $O P$. Show that $A H S O$ is a paralelogram.

3 Let $P=\left\{P_{1}, P_{2}, \ldots, P_{1997}\right\}$ be a set of 1997 points in the interior of a circle of radius 1 , where P_{1} is the center of the circle. For each $k=1 \ldots, 1997$, let x_{k} be the distance of P_{k} to the point of P closer to P_{k}, but different from it. Show that $\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}+\ldots+\left(x_{1997}\right)^{2} \leq 9$.

