1997 IberoAmerican



## **AoPS Community**

## IberoAmerican 1997

www.artofproblemsolving.com/community/c4537 by parmenides51, carlosbr

| Day 1 |                                                                                                                                                                                                                                                                                                                                                     |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Let $r \ge 1$ be a real number that holds with the property that for each pair of positive integer<br>numbers $m$ and $n$ , with $n$ a multiple of $m$ , it is true that $\lfloor nr \rfloor$ is multiple of $\lfloor mr \rfloor$ . Show that $r$ has<br>to be an integer number.                                                                   |
|       | Note: If $x$ is a real number, $\lfloor x \rfloor$ is the greatest integer lower than or equal to $x$ .                                                                                                                                                                                                                                             |
| 2     | In a triangle $ABC$ , it is drawn a circumference with center in the incenter $I$ and that meet twice<br>each of the sides of the triangle: the segment $BC$ on $D$ and $P$ (where $D$ is nearer two $B$ ); the<br>segment $CA$ on $E$ and $Q$ (where $E$ is nearer to $C$ ); and the segment $AB$ on $F$ and $R$ (where $F$<br>is nearer to $A$ ). |
|       | Let S be the point of intersection of the diagonals of the quadrilateral $EQFR$ . Let T be the point of intersection of the diagonals of the quadrilateral $FRDP$ . Let U be the point of intersection of the diagonals of the quadrilateral $DPEQ$ .                                                                                               |
|       | Show that the circumcircle to the triangle $\triangle FRT$ , $\triangle DPU$ and $\triangle EQS$ have a unique point in common.                                                                                                                                                                                                                     |
| 3     | Let $n \ge 2$ be an integer number and $D_n$ the set of all the points $(x, y)$ in the plane such that its coordinates are integer numbers with: $-n \le x \le n$ and $-n \le y \le n$ .                                                                                                                                                            |
|       | (a) There are three possible colors in which the points of $D_n$ are painted with (each point has a unique color). Show that with any distribution of the colors, there are always two points of $D_n$ with the same color such that the line that contains them does not go through any other point of $D_n$ .                                     |
|       | (b) Find a way to paint the points of $D_n$ with 4 colors such that if a line contains exactly two points of $D_n$ , then, this points have different colors.                                                                                                                                                                                       |
| Day 2 |                                                                                                                                                                                                                                                                                                                                                     |
| 1     | Let $n$ be a positive integer. Consider the sum $m_{1}m_{2} + m_{2}m_{3} + \dots + m_{n}m_{n}$ , where that values of the                                                                                                                                                                                                                           |

Let *n* be a positive integer. Consider the sum  $x_1y_1 + x_2y_2 + \cdots + x_ny_n$ , where that values of the variables  $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n$  are either 0 or 1.

Let I(n) be the number of 2*n*-tuples  $(x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n)$  such that the sum of the number is odd, and let P(n) be the number of 2*n*-tuples  $(x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n)$  such that the sum is an even number. Show that:

$$\frac{P(n)}{I(n)} = \frac{2^n + 1}{2^n - 1}$$

2 In an acute triangle  $\triangle ABC$ , let AE and BF be highs of it, and H its orthocenter. The symmetric line of AE with respect to the angle bisector of  $\triangleleft A$  and the symmetric line of BF with respect to the angle bisector of  $\triangleleft B$  intersect each other on the point O. The lines AE and AO intersect again the circuncircle to  $\triangle ABC$  on the points M and N respectively.

Let P be the intersection of BC with HN; R the intersection of BC with OM; and S the intersection of HR with OP. Show that AHSO is a paralelogram.

**3** Let  $P = \{P_1, P_2, ..., P_{1997}\}$  be a set of 1997 points in the interior of a circle of radius 1, where  $P_1$  is the center of the circle. For each k = 1, ..., 1997, let  $x_k$  be the distance of  $P_k$  to the point of P closer to  $P_k$ , but different from it. Show that  $(x_1)^2 + (x_2)^2 + ... + (x_{1997})^2 \le 9$ .

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.