

AoPS Community

IberoAmerican 1998

www.artofproblemsolving.com/community/c4538 by carlosbr, Arne

	Day 1	
	1	Given 98 points in a circle. Mary and Joseph play alternatively in the next way:
		- Each one draw a segment joining two points that have not been joined before.
		The game ends when the 98 points have been used as end points of a segments at least once. The winner is the person that draw the last segment. If Joseph starts the game, who can assure that is going to win the game.
	2	The circumference inscribed on the triangle ABC is tangent to the sides BC , CA and AB on the points D , E and F , respectively. AD intersect the circumference on the point Q . Show that the line EQ meet the segment AF at its midpoint if and only if $AC = BC$.
	3	Find the minimum natural number n with the following property: between any collection of n distinct natural numbers in the set $\{1, 2,, 999\}$ it is possible to choose four different a, b, c, d such that: $a + 2b + 3c = d$.
	Day 2	
	1	There are representants from n different countries sit around a circular table ($n \ge 2$), in such way that if two representants are from the same country, then, their neighbors to the right are not from the same country. Find, for every n , the maximal number of people that can be sit around the table.
	2	Find the maximal possible value of n such that there exist points $P_1, P_2, P_3, \ldots, P_n$ in the plane and real numbers r_1, r_2, \ldots, r_n such that the distance between any two different points P_i and P_j is $r_i + r_j$.
	3	Let λ the positive root of the equation $t^2 - 1998t - 1 = 0$. It is defined the sequence $x_0, x_1, x_2, \dots, x_n$ by $x_0 = 1$, $x_{n+1} = \lfloor \lambda x_n \rfloor$ for $n = 1, 2 \dots$ Find the remainder of the division of x_{1998} by 1998.
		Note: $\lfloor x \rfloor$ is the greatest integer less than or equal to x .
_		

AoPS Online 🕸 AoPS Academy 🗿 AoPS 🕬

. . .

Art of Problem Solving is an ACS WASC Accredited School.