Art of Problem Solving

AoPS Community

IberoAmerican 1999

www.artofproblemsolving.com/community/c4539
by carlosbr

Day 1

1 Find all the positive integers less than 1000 such that the cube of the sum of its digits is equal to the square of such integer.

2 Given two circle M and N, we say that M bisects N if they intersect in two points and the common chord is a diameter of N. Consider two fixed non-concentric circles C_{1} and C_{2}.
a) Show that there exists infinitely many circles B such that B bisects both C_{1} and C_{2}.
b) Find the locus of the centres of such circles B.

3 Let $P_{1}, P_{2}, \ldots, P_{n}$ be n distinct points over a line in the plane ($n \geq 2$). Consider all the circumferences with diameters $P_{i} P_{j}(1 \leq i, j \leq n)$ and they are painted with k given colors. Lets call this configuration a (n, k)-cloud.
For each positive integer k, find all the positive integers n such that every possible (n, k)-cloud has two mutually exterior tangent circumferences of the same color.

Day 2

1 Let B be an integer greater than 10 such that everyone of its digits belongs to the set $\{1,3,7,9\}$. Show that B has a prime divisor greater than or equal to 11 .

2 An acute triangle $\triangle A B C$ is inscribed in a circle with centre O. The altitudes of the triangle are $A D, B E$ and $C F$. The line $E F$ cut the circumference on P and Q.
a) Show that $O A$ is perpendicular to $P Q$.
b) If M is the midpoint of $B C$, show that $A P^{2}=2 A D \cdot O M$.

3 Let A and B points in the plane and C a point in the perpendiclar bisector of $A B$. It is constructed a sequence of points $C_{1}, C_{2}, \ldots, C_{n}, \ldots$ in the following way: $C_{1}=C$ and for $n \geq 1$, if C_{n} does not belongs to $A B$, then C_{n+1} is the circumcentre of the triangle $\triangle A B C_{n}$.

Find all the points C such that the sequence C_{1}, C_{2}, \ldots is defined for all n and turns eventually periodic.

Note: A sequence C_{1}, C_{2}, \ldots is called eventually periodic if there exist positive integers k and p such that $C_{n+p}=c_{n}$ for all $n \geq k$.

