

AoPS Community

IberoAmerican 1999

www.artofproblemsolving.com/community/c4539 by carlosbr

Day 1	
1	Find all the positive integers less than 1000 such that the cube of the sum of its digits is equal to the square of such integer.
2	Given two circle M and N , we say that M bisects N if they intersect in two points and the common chord is a diameter of N . Consider two fixed non-concentric circles C_1 and C_2 . a) Show that there exists infinitely many circles B such that B bisects both C_1 and C_2 . b) Find the locus of the centres of such circles B .
3	Let P_1, P_2, \ldots, P_n be <i>n</i> distinct points over a line in the plane ($n \ge 2$). Consider all the circum- ferences with diameters P_iP_j ($1 \le i, j \le n$) and they are painted with <i>k</i> given colors. Lets call this configuration a (n, k)-cloud.
	For each positive integer k , find all the positive integers n such that every possible (n, k) -cloud has two mutually exterior tangent circumferences of the same color.
Day 2	
1	Let <i>B</i> be an integer greater than 10 such that everyone of its digits belongs to the set $\{1, 3, 7, 9\}$. Show that <i>B</i> has a prime divisor greater than or equal to 11.
2	An acute triangle $\triangle ABC$ is inscribed in a circle with centre O . The altitudes of the triangle are AD, BE and CF . The line EF cut the circumference on P and Q . a) Show that OA is perpendicular to PQ . b) If M is the midpoint of BC , show that $AP^2 = 2AD \cdot OM$.
3	Let <i>A</i> and <i>B</i> points in the plane and <i>C</i> a point in the perpendiclar bisector of <i>AB</i> . It is constructed a sequence of points $C_1, C_2, \ldots, C_n, \ldots$ in the following way: $C_1 = C$ and for $n \ge 1$, if C_n does not belongs to <i>AB</i> , then C_{n+1} is the circumcentre of the triangle $\triangle ABC_n$.
	Find all the points C such that the sequence C_1, C_2, \ldots is defined for all n and turns eventually periodic.
	Note: A sequence C_1, C_2, \ldots is called eventually periodic if there exist positive integers k and p such that $C_{n+p} = c_n$ for all $n \ge k$.

AoPS Online 🟟 AoPS Academy 🔯 AoPS 🕬