

AoPS Community

IberoAmerican 2001

_

www.artofproblemsolving.com/community/c4541 by carlosbr

Day 1	
1	We say that a natural number n is <i>charrua</i> if it satisfy simultaneously the following conditions: - Every digit of n is greater than 1. - Every time that four digits of n are multiplied, it is obtained a divisor of n
	Show that every natural number k there exists a <i>charrua</i> number with more than k digits.
2	The incircle of the triangle $\triangle ABC$ has center at O and it is tangent to the sides BC , AC and AB at the points X , Y and Z , respectively. The lines BO and CO intersect the line YZ at the points P and Q , respectively.
	Show that if the segments XP and XQ has the same length, then the triangle $\triangle ABC$ is isosceles.
3	Let S be a set of n elements and S_1, S_2, \ldots, S_k are subsets of S ($k \ge 2$), such that every one of them has at least r elements.
	Show that there exists <i>i</i> and <i>j</i> , with $1 \le i < j \le k$, such that the number of common elements of S_i and S_j is greater or equal to: $r - \frac{nk}{4(k-1)}$
Day 2	
1	Find the maximum number of increasing arithmetic progressions that can have a finite sequence of real numbers $a_1 < a_2 < \cdots < a_n$ of $n \ge 3$ real numbers.
2	In a board of 2000×2001 squares with integer coordinates (x, y) , $0 \le x \le 1999$ and $0 \le y \le 2000$. A ship in the table moves in the following way: before a move, the ship is in position (x, y) and has a velocity of (h, v) where x, y, h, v are integers. The ship chooses new velocity (h', v') such that $h' - h, v' - v \in \{-1, 0, 1\}$. The new position of the ship will be (x', y') where x' is the remainder of the division of $x + h'$ by 2000 and y' is the remainder of the division of $y + v'$ by 2001.
	There are two ships on the board: The Martian ship and the Human trying to capture it. Initially each ship is in a different square and has velocity $(0,0)$. The Human is the first to move;

Is there a strategy for the Human to capture the Martian, independent of the initial positions and the Martians moves?

thereafter they continue moving alternatively.

AoPS Community

Note: The Human catches the Martian ship by reaching the same position as the Martian ship after the same move.

3 Show that it is impossible to cover a unit square with five equal squares with side $s < \frac{1}{2}$.

Act of Problem Solving is an ACS WASC Accredited School.

2