Art of Problem Solving

AoPS Community

IberoAmerican 2001

www.artofproblemsolving.com/community/c4541
by carlosbr

Day 1

1 We say that a natural number n is charrua if it satisfy simultaneously the following conditions:

- Every digit of n is greater than 1 .
- Every time that four digits of n are multiplied, it is obtained a divisor of n

Show that every natural number k there exists a charrua number with more than k digits.
2 The incircle of the triangle $\triangle A B C$ has center at O and it is tangent to the sides $B C, A C$ and $A B$ at the points X, Y and Z, respectively. The lines $B O$ and $C O$ intersect the line $Y Z$ at the points P and Q, respectively.
Show that if the segments $X P$ and $X Q$ has the same length, then the triangle $\triangle A B C$ is isosceles.

3 Let S be a set of n elements and $S_{1}, S_{2}, \ldots, S_{k}$ are subsets of $S(k \geq 2)$, such that every one of them has at least r elements.

Show that there exists i and j, with $1 \leq i<j \leq k$, such that the number of common elements of S_{i} and S_{j} is greater or equal to: $r-\frac{n k}{4(k-1)}$

Day 2

1 Find the maximum number of increasing arithmetic progressions that can have a finite sequence of real numbers $a_{1}<a_{2}<\cdots<a_{n}$ of $n \geq 3$ real numbers.

2 In a board of 2000×2001 squares with integer coordinates $(x, y), 0 \leq x \leq 1999$ and $0 \leq y \leq$ 2000. A ship in the table moves in the following way: before a move, the ship is in position (x, y) and has a velocity of (h, v) where x, y, h, v are integers. The ship chooses new velocity (h^{\prime}, v^{\prime}) such that $h^{\prime}-h, v^{\prime}-v \in\{-1,0,1\}$. The new position of the ship will be (x^{\prime}, y^{\prime}) where x^{\prime} is the remainder of the division of $x+h^{\prime}$ by 2000 and y^{\prime} is the remainder of the division of $y+v^{\prime}$ by 2001.

There are two ships on the board: The Martian ship and the Human trying to capture it. Initially each ship is in a different square and has velocity $(0,0)$. The Human is the first to move; thereafter they continue moving alternatively.

Is there a strategy for the Human to capture the Martian, independent of the initial positions and the Martians moves?

Note: The Human catches the Martian ship by reaching the same position as the Martian ship after the same move.

3 Show that it is impossible to cover a unit square with five equal squares with side $s<\frac{1}{2}$.

