Art of Problem Solving

AoPS Community

2002 IberoAmerican

IberoAmerican 2002

www.artofproblemsolving.com/community/c4542
by carlosbr

Day 1

1 The integer numbers from 1 to 2002 are written in a blackboard in increasing order $1,2, \ldots, 2001,2002$. After that, somebody erases the numbers in the $(3 k+1)-t h$ places i.e. $(1,4,7, \ldots)$. After that, the same person erases the numbers in the $(3 k+1)-t h$ positions of the new list (in this case, $2,5,9, \ldots)$. This process is repeated until one number remains. What is this number?

2 Given any set of 9 points in the plane such that there is no 3 of them collinear, show that for each point P of the set, the number of triangles with its vertices on the other 8 points and that contain P on its interior is even.
$3 \quad$ Let P be a point in the interior of the equilateral triangle $\triangle A B C$ such that $\varangle A P C=120^{\circ}$. Let M be the intersection of $C P$ with $A B$, and N the intersection of $A P$ and $B C$. Find the locus of the circumcentre of the triangle $M B N$ as P varies.

Day 2

1 In a triangle $\triangle A B C$ with all its sides of different length, D is on the side $A C$, such that $B D$ is the angle bisector of $\varangle A B C$. Let E and F, respectively, be the feet of the perpendicular drawn from A and C to the line $B D$ and let M be the point on $B C$ such that $D M$ is perpendicular to $B C$. Show that $\varangle E M D=\varangle D M F$.

2 The sequence of real numbers a_{1}, a_{2}, \ldots is defined as follows: $a_{1}=56$ and $a_{n+1}=a_{n}-\frac{1}{a_{n}}$ for $n \geq 1$. Show that there is an integer $1 \leq k \leq 2002$ such that $a_{k}<0$.

3 A policeman is trying to catch a robber on a board of 2001×2001 squares. They play alternately, and the player whose trun it is moves to a space in one of the following directions: $\downarrow, \rightarrow, \nwarrow$.

If the policeman is on the square in the bottom-right corner, he can go directly to the square in the upper-left corner (the robber can not do this). Initially the policeman is in the central square, and the robber is in the upper-left adjacent square. Show that:
a) The robber may move at least 10000 times before the being captured. b) The policeman has an strategy such that he will eventually catch the robber.

Note: The policeman can catch the robber if he reaches the square where the robber is, but not if the robber enters the square occupied by the policeman.

