

AoPS Community

IberoAmerican 2002

www.artofproblemsolving.com/community/c4542 by carlosbr

Day 1	
1	The integer numbers from 1 to 2002 are written in a blackboard in increasing order $1, 2,, 2001, 2002$ After that, somebody erases the numbers in the $(3k+1) - th$ places i.e. $(1, 4, 7,)$. After that, the same person erases the numbers in the $(3k+1) - th$ positions of the new list (in this case, $2, 5, 9,$). This process is repeated until one number remains. What is this number?
2	Given any set of 9 points in the plane such that there is no 3 of them collinear, show that for each point P of the set, the number of triangles with its vertices on the other 8 points and that contain P on its interior is even.
3	Let <i>P</i> be a point in the interior of the equilateral triangle $\triangle ABC$ such that $\triangleleft APC = 120^{\circ}$. Let <i>M</i> be the intersection of <i>CP</i> with <i>AB</i> , and <i>N</i> the intersection of <i>AP</i> and <i>BC</i> . Find the locus of the circumcentre of the triangle <i>MBN</i> as <i>P</i> varies.
Day 2	2
1	In a triangle $\triangle ABC$ with all its sides of different length, D is on the side AC , such that BD is the angle bisector of $\triangleleft ABC$. Let E and F , respectively, be the feet of the perpendicular drawn from A and C to the line BD and let M be the point on BC such that DM is perpendicular to BC . Show that $\triangleleft EMD = \triangleleft DMF$.
2	The sequence of real numbers a_1, a_2, \ldots is defined as follows: $a_1 = 56$ and $a_{n+1} = a_n - \frac{1}{a_n}$ for $n \ge 1$. Show that there is an integer $1 \le k \le 2002$ such that $a_k < 0$.
3	A policeman is trying to catch a robber on a board of 2001×2001 squares. They play alternately, and the player whose trun it is moves to a space in one of the following directions: $\downarrow, \rightarrow, \nwarrow$.
	If the policeman is on the square in the bottom-right corner, he can go directly to the square in the upper-left corner (the robber can not do this). Initially the policeman is in the central square, and the robber is in the upper-left adjacent square. Show that:
	a) The robber may move at least 10000 times before the being captured. $b)$ The policeman has an strategy such that he will eventually catch the robber.
	Note: The policeman can catch the robber if he reaches the square where the robber is, but not if the robber enters the square occupied by the policeman.

Art of Problem Solving is an ACS WASC Accredited School.