2004 IberoAmerican

AoPS Community

IberoAmerican 2004

www.artofproblemsolving.com/community/c4544 by Pascual2005, April, daniel73

Day 1	
1	It is given a 1001*1001 board divided in 1*1 squares. We want to amrk m squares in such a way that: 1: if 2 squares are adjacent then one of them is marked. 2: if 6 squares lie consecutively in a row or column then two adjacent squares from them are marked.
	Find the minimun number of squares we most mark.
2	In the plane are given a circle with center O and radius r and a point A outside the circle. For any point M on the circle, let N be the diametrically opposite point. Find the locus of the circumcenter of triangle AMN when M describes the circle.
3	Let <i>n</i> and <i>k</i> be positive integers such as either <i>n</i> is odd or both <i>n</i> and <i>k</i> are even. Prove that exists integers <i>a</i> and <i>b</i> such as $GCD(a, n) = GCD(b, n) = 1$ and $k = a + b$
Day 2	
1	Determine all pairs (a, b) of positive integers, each integer having two decimal digits, such that $100a + b$ and $201a + b$ are both perfect squares.
2	Given a scalene triangle <i>ABC</i> . Let <i>A'</i> , <i>B'</i> , <i>C'</i> be the points where the internal bisectors of the angles <i>CAB</i> , <i>ABC</i> , <i>BCA</i> meet the sides <i>BC</i> , <i>CA</i> , <i>AB</i> , respectively. Let the line <i>BC</i> meet the perpendicular bisector of <i>AA'</i> at <i>A''</i> . Let the line <i>CA</i> meet the perpendicular bisector of <i>BB'</i> at <i>B'</i> . Let the line <i>AB</i> meet the perpendicular bisector of <i>CC'</i> at <i>C''</i> . Prove that <i>A''</i> , <i>B''</i> and <i>C''</i> are collinear.
3	Given a set \mathcal{H} of points in the plane, P is called an "intersection point of \mathcal{H} " if distinct points A, B, C, D exist in \mathcal{H} such that lines AB and CD are distinct and intersect in P . Given a finite set \mathcal{A}_0 of points in the plane, a sequence of sets is defined as follows: for any $j \ge 0$, \mathcal{A}_{j+1} is the union of \mathcal{A}_j and the intersection points of \mathcal{A}_j . Prove that, if the union of all the sets in the sequence is finite, then $\mathcal{A}_i = \mathcal{A}_1$ for any $i \ge 1$.

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🕬