Art of Problem Solving

AoPS Community

IberoAmerican 2004

www.artofproblemsolving.com/community/c4544
by Pascual2005, April, daniel73

Day 1

1 It is given a 1001*1001 board divided in 1*1 squares. We want to amrk m squares in such a way that:
1: if 2 squares are adjacent then one of them is marked.
2: if 6 squares lie consecutively in a row or column then two adjacent squares from them are marked.

Find the minimun number of squares we most mark.
2 In the plane are given a circle with center O and radius r and a point A outside the circle. For any point M on the circle, let N be the diametrically opposite point. Find the locus of the circumcenter of triangle $A M N$ when M describes the circle.

3 Let n and k be positive integers such as either n is odd or both n and k are even. Prove that exists integers a and b such as $G C D(a, n)=G C D(b, n)=1$ and $k=a+b$

Day 2

1 Determine all pairs (a, b) of positive integers, each integer having two decimal digits, such that $100 a+b$ and $201 a+b$ are both perfect squares.

2 Given a scalene triangle $A B C$. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the points where the internal bisectors of the angles $C A B, A B C, B C A$ meet the sides $B C, C A, A B$, respectively. Let the line $B C$ meet the perpendicular bisector of $A A^{\prime}$ at $A^{\prime \prime}$. Let the line $C A$ meet the perpendicular bisector of $B B^{\prime}$ at B^{\prime}. Let the line $A B$ meet the perpendicular bisector of $C C^{\prime}$ at $C^{\prime \prime}$. Prove that $A^{\prime \prime}, B^{\prime \prime}$ and $C^{\prime \prime}$ are collinear.

3 Given a set \mathcal{H} of points in the plane, P is called an "intersection point of \mathcal{H} " if distinct points A, B, C, D exist in \mathcal{H} such that lines $A B$ and $C D$ are distinct and intersect in P.
Given a finite set \mathcal{A}_{0} of points in the plane, a sequence of sets is defined as follows: for any $j \geq 0, \mathcal{A}_{j+1}$ is the union of \mathcal{A}_{j} and the intersection points of \mathcal{A}_{j}.
Prove that, if the union of all the sets in the sequence is finite, then $\mathcal{A}_{i}=\mathcal{A}_{1}$ for any $i \geq 1$.

