AoPS Community

IberoAmerican 2005

www.artofproblemsolving.com/community/c4545
by cyshine, Pascual2005, parmenides51, Sailor

Day 1 September 27th

1 Determine all triples of real numbers (a, b, c) such that

$$
\begin{aligned}
x y z & =8 \\
x^{2} y+y^{2} z+z^{2} x & =73 \\
x(y-z)^{2}+y(z-x)^{2}+z(x-y)^{2} & =98 .
\end{aligned}
$$

2 A flea jumps in a straight numbered line. It jumps first from point 0 to point 1 . Afterwards, if its last jump was from A to B, then the next jump is from B to one of the points $B+(B-A)-1$, $B+(B-A), B+(B-A)+1$.

Prove that if the flea arrived twice at the point n, n positive integer, then it performed at least $\lceil 2 \sqrt{n}\rceil$ jumps.
$3 \quad$ Let $p>3$ be a prime. Prove that if

$$
\sum_{i=1}^{p-1} \frac{1}{i^{p}}=\frac{n}{m},
$$

with $g c d(n, m)=1$, then p^{3} divides n.
Day 2 September 28th
4 Denote by $a \bmod b$ the remainder of the euclidean division of a by b. Determine all pairs of positive integers (a, p) such that p is prime and

$$
a \bmod p+a \bmod 2 p+a \bmod 3 p+a \bmod 4 p=a+p .
$$

5 Let O be the circumcenter of acutangle triangle $A B C$ and let A_{1} be some point in the smallest arc $B C$ of the circumcircle of $A B C$. Let A_{2} and A_{3} points on sides $A B$ and $A C$, respectively, such that $\angle B A_{1} A_{2}=\angle O A C$ and $\angle C A_{1} A_{3}=\angle O A B$.

Prove that the line $A_{2} A_{3}$ passes through the orthocenter of $A B C$.

6 Let n be a fixed positive integer. The points $A_{1}, A_{2}, \ldots, A_{2 n}$ are on a straight line. Color each point blue or red according to the following procedure: draw n pairwise disjoint circumferences, each with diameter $A_{i} A_{j}$ for some $i \neq j$ and such that every point A_{k} belongs to exactly one circumference. Points in the same circumference must be of the same color.

Determine the number of ways of coloring these $2 n$ points when we vary the n circumferences and the distribution of the colors.

