Art of Problem Solving

AoPS Community

IberoAmerican 2006

www.artofproblemsolving.com/community/c4546
by April, pohoatza

Day 1

1 In a scalene triangle $A B C$ with $\angle A=90^{\circ}$, the tangent line at A to its circumcircle meets line $B C$ at M and the incircle touches $A C$ at S and $A B$ at R.
The lines $R S$ and $B C$ intersect at N, while the lines $A M$ and $S R$ intersect at U.
Prove that the triangle $U M N$ is isosceles.
2 For n real numbers $a_{1}, a_{2}, \ldots, a_{n}$, let d denote the difference between the greatest and smallest of them and $S=\sum_{i<j}\left|a_{i}-a_{j}\right|$. Prove that

$$
(n-1) d \leq S \leq \frac{n^{2}}{4} d
$$

and find when each equality holds.
3 The numbers $1,2, \ldots, n^{2}$ are written in the squares of an $n \times n$ board in some order. Initially there is a token on the square labelled with n^{2}. In each step, the token can be moved to any adjacent square (by side). At the beginning, the token is moved to the square labelled with the number 1 along a path with the minimum number of steps. Then it is moved to the square labelled with 2 , then to square 3 , etc, always taking the shortest path, until it returns to the initial square. If the total trip takes N steps, find the smallest and greatest possible values of N.

Day 2

1 Find all pairs (a, b) of positive integers such that $2 a-1$ and $2 b+1$ are coprime and $a+b$ divides $4 a b+1$.

2 The sides $A D$ and $C D$ of a tangent quadrilateral $A B C D$ touch the incircle φ at P and Q, respectively. If M is the midpoint of the chord $X Y$ determined by φ on the diagonal $B D$, prove that $\angle A M P=\angle C M Q$.

3 Consider a regular n-gon with n odd. Given two adjacent vertices A_{1} and A_{2}, define the sequence $\left(A_{k}\right)$ of vertices of the n-gon as follows: For $k \geq 3, A_{k}$ is the vertex lying on the perpendicular bisector of $A_{k-2} A_{k-1}$. Find all n for which each vertex of the n-gon occurs in this sequence.

