

AoPS Community

Serbia Team Selection Test 2017

www.artofproblemsolving.com/community/c454657 by mihajlon, aleksam

– Day 1

1 Let *ABC* be a triangle and *D* the midpoint of the side *BC*. Define points *E* and *F* on *AC* and *B*, respectively, such that DE = DF and $\angle EDF = \angle BAC$. Prove that

$$DE \ge \frac{AB + AC}{4}.$$

- 2 Initially a pair (x, y) is written on the board, such that exactly one of it's coordinates is odd. On such a pair we perform an operation to get pair $(\frac{x}{2}, y + \frac{x}{2})$ if 2|x and $(x + \frac{y}{2}, \frac{y}{2})$ if 2|y. Prove that for every odd n > 1 there is a even positive integer b < n such that starting from the pair (n, b) we will get the pair (b, n) after finitely many operations.
- A function f: N→ N is called nice if f^a(b) = f(a+b-1), where f^a(b) denotes a times applied function f.
 Let g be a nice function, and an integer A exists such that g(A + 2018) = g(A) + 1.
 a) Prove that g(n + 2017²⁰¹⁷) = g(n) for all n ≥ A + 2.
 b) If g(A + 1) ≠ g(A + 1 + 2017²⁰¹⁷) find g(n) for n < A.

- 4 We have an $n \times n$ square divided into unit squares. Each side of unit square is called unit segment. Some isoceles right triangles of hypotenuse 2 are put on the square so all their vertices are also vertices of unit squares. For which n it is possible that every unit segment belongs to exactly one triangle(unit segment belongs to a triangle even if it's on the border of the triangle)?
- 5 Let $n \ge 2$ be a positive integer and $\{x_i\}_{i=0}^n$ a sequence such that not all of its elements are zero and there is a positive constant C_n for which: (i) $x_1 + \cdots + x_n = 0$, and (ii) for each *i* either $x_i \le x_{i+1}$ or $x_i \le x_{i+1} + C_n x_{i+2}$ (all indexes are assumed modulo *n*). Prove that a) $C_n \ge 2$, and b) $C_n = 2$ if and only $2 \mid n$.
- **6** Let *k* be a positive integer and let *n* be the smallest number with exactly *k* divisors. Given *n* is a cube, is it possible that *k* is divisible by a prime factor of the form 3j + 2?

[–] Day 2

AoPS Community

2017 Serbia Team Selection Test

Act of Problem Solving is an ACS WASC Accredited School.