AoPS Community

Serbia Team Selection Test 2017

www.artofproblemsolving.com/community/c454657
by mihajlon, aleksam

- Day 1
$1 \quad$ Let $A B C$ be a triangle and D the midpoint of the side $B C$. Define points E and F on $A C$ and B, respectively, such that $D E=D F$ and $\angle E D F=\angle B A C$. Prove that

$$
D E \geq \frac{A B+A C}{4} .
$$

2 Initally a pair (x, y) is written on the board, such that exactly one of it's coordinates is odd. On such a pair we perform an operation to get pair $\left(\frac{x}{2}, y+\frac{x}{2}\right)$ if $2 \mid x$ and $\left(x+\frac{y}{2}, \frac{y}{2}\right)$ if $2 \mid y$. Prove that for every odd $n>1$ there is a even positive integer $b<n$ such that starting from the pair (n, b) we will get the pair (b, n) after finitely many operations.

3 A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is called nice if $f^{a}(b)=f(a+b-1)$, where $f^{a}(b)$ denotes a times applied function f.
Let g be a nice function, and an integer A exists such that $g(A+2018)=g(A)+1$.
a) Prove that $g\left(n+2017^{2017}\right)=g(n)$ for all $n \geq A+2$.
b) If $g(A+1) \neq g\left(A+1+2017^{2017}\right)$ find $g(n)$ for $n<A$.

- Day 2

4 We have an $n \times n$ square divided into unit squares. Each side of unit square is called unit segment. Some isoceles right triangles of hypotenuse 2 are put on the square so all their vertices are also vertices of unit squares. For which n it is possible that every unit segment belongs to exactly one triangle(unit segment belongs to a triangle even if it's on the border of the triangle)?

5 Let $n \geq 2$ be a positive integer and $\left\{x_{i}\right\}_{i=0}^{n}$ a sequence such that not all of its elements are zero and there is a positive constant C_{n} for which:
(i) $x_{1}+\cdots+x_{n}=0$, and
(ii) for each i either $x_{i} \leq x_{i+1}$ or $x_{i} \leq x_{i+1}+C_{n} x_{i+2}$ (all indexes are assumed modulo n).

Prove that
a) $C_{n} \geq 2$, and
b) $C_{n}=2$ if and only $2 \mid n$.
$6 \quad$ Let k be a positive integer and let n be the smallest number with exactly k divisors. Given n is a cube, is it possible that k is divisible by a prime factor of the form $3 j+2$?

