Art of Problem Solving

AoPS Community

IberoAmerican 2007

www.artofproblemsolving.com/community/c4547
by dM@gGo_, Jutaro

Day 1 September 11th

1 Given an integer m, define the sequence $\left\{a_{n}\right\}$ as follows:

$$
a_{1}=\frac{m}{2}, a_{n+1}=a_{n}\left\lceil a_{n}\right\rceil \text {, if } n \geq 1
$$

Find all values of m for which a_{2007} is the first integer appearing in the sequence.
Note: For a real number $x,\lceil x\rceil$ is defined as the smallest integer greater or equal to x. For example, $\lceil\pi\rceil=4$, $\lceil 2007\rceil=2007$.

2 Let $A B C$ be a triangle with incenter I and let Γ be a circle centered at I, whose radius is greater than the inradius and does not pass through any vertex. Let X_{1} be the intersection point of Γ and line $A B$, closer to $B ; X_{2}, X_{3}$ the points of intersection of Γ and line $B C$, with X_{2} closer to B; and let X_{4} be the point of intersection of Γ with line $C A$ closer to C. Let K be the intersection point of lines $X_{1} X_{2}$ and $X_{3} X_{4}$. Prove that $A K$ bisects segment $X_{2} X_{3}$.

3 Two teams, A and B, fight for a territory limited by a circumference.
A has n blue flags and B has n white flags ($n \geq 2$, fixed). They play alternatively and A begins the game. Each team, in its turn, places one of his flags in a point of the circumference that has not been used in a previous play. Each flag, once placed, cannot be moved.

Once all $2 n$ flags have been placed, territory is divided between the two teams. A point of the territory belongs to A if the closest flag to it is blue, and it belongs to B if the closest flag to it is white. If the closest blue flag to a point is at the same distance than the closest white flag to that point, the point is neutral (not from A nor from B). A team wins the game is their points cover a greater area that that covered by the points of the other team. There is a draw if both cover equal areas.
Prove that, for every n, team B has a winning strategy.
Day 2 September 12th
4 In a 19×19 board, a piece called dragon moves as follows: It travels by four squares (either horizontally or vertically) and then it moves one square more in a direction perpendicular to its previous direction. It is known that, moving so, a dragon can reach every square of the board.

The draconian distance between two squares is defined as the least number of moves a dragon
needs to move from one square to the other.
Let C be a corner square, and V the square neighbor of C that has only a point in common with C. Show that there exists a square X of the board, such that the draconian distance between C and X is greater than the draconian distance between C and V.

5 Let's say a positive integer n is atresvido if the set of its divisors (including 1 and n) can be split in in 3 subsets such that the sum of the elements of each is the same. Determine the least number of divisors an atresvido number can have.
$6 \quad$ Let \mathcal{F} be a family of hexagons H satisfying the following properties:
i) H has parallel opposite sides.
ii) Any 3 vertices of H can be covered with a strip of width 1 .

Determine the least $\ell \in \mathbb{R}$ such that every hexagon belonging to \mathcal{F} can be covered with a strip of width ℓ.

Note: A strip is the area bounded by two parallel lines separated by a distance ℓ. The lines belong to the strip, too.

