Art of Problem Solving

AoPS Community

IberoAmerican 2008

www.artofproblemsolving.com/community/c4548
by Jutaro, msecco, jgnr

Day 1 September 23rd

1 The integers from 1 to 2008^{2} are written on each square of a 2008×2008 board. For every row and column the difference between the maximum and minimum numbers is computed. Let S be the sum of these 4016 numbers. Find the greatest possible value of S.

2 Given a triangle $A B C$, let r be the external bisector of $\angle A B C$. P and Q are the feet of the perpendiculars from A and C to r. If $C P \cap B A=M$ and $A Q \cap B C=N$, show that $M N, r$ and $A C$ concur.

3 Let $P(x)=x^{3}+m x+n$ be an integer polynomial satisfying that if $P(x)-P(y)$ is divisible by 107, then $x-y$ is divisible by 107 as well, where x and y are integers. Prove that 107 divides m.

Day 2 September 24th
4 Prove that the equation

$$
x^{2008}+2008!=21^{y}
$$

doesn't have solutions in integers.
5 Let $A B C$ a triangle and X, Y and Z points at the segments $B C, A C$ and $A B$, respectively. Let A^{\prime}, B^{\prime} and C^{\prime} the circuncenters of triangles $A Z Y, B X Z, C Y X$, respectively. Prove that $4\left(A^{\prime} B^{\prime} C^{\prime}\right) \geq$ $(A B C)$ with equality if and only if $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ are concurrents.

Note: $(X Y Z)$ denotes the area of $X Y Z$
6 Biribol is a game played between two teams of 4 people each (teams are not fixed). Find all the possible values of n for which it is possible to arrange a tournament with n players in such a way that every couple of people plays a match in opposite teams exactly once.

