AoPS Community

IberoAmerican 2009

www.artofproblemsolving.com/community/c4549
by Jutaro, abwagnerrodz, parmenides51

Day 1 September 22nd

1 Given a positive integer $n \geq 2$, consider a set of n islands arranged in a circle. Between every two neigboring islands two bridges are built as shown in the figure.

Starting at the island X_{1}, in how many ways one can one can cross the $2 n$ bridges so that no bridge is used more than once?

2 Define the succession $a_{n}, n>0$ as $n+m$, where m is the largest integer such that $2^{2^{m}} \leq n 2^{n}$. Find all numbers that are not in the succession.

3 Let C_{1} and C_{2} be two congruent circles centered at O_{1} and O_{2}, which intersect at A and B. Take a point P on the arc $A B$ of C_{2} which is contained in C_{1}. $A P$ meets C_{1} at $C, C B$ meets C_{2} at D and the bisector of $\angle C A D$ intersects C_{1} and C_{2} at E and L, respectively. Let F be the symmetric point of D with respect to the midpoint of $P E$. Prove that there exists a point X satisfying $\angle X F L=\angle X D C=30^{\circ}$ and $C X=O_{1} O_{2}$.

Author: Arnoldo Aguilar (El Salvador)
Day 2 September 23rd
4 Given a triangle $A B C$ of incenter I, let P be the intersection of the external bisector of angle A and the circumcircle of $A B C$, and J the second intersection of $P I$ and the circumcircle of $A B C$. Show that the circumcircles of triangles $J I B$ and $J I C$ are respectively tangent to $I C$ and $I B$.

5 Consider the sequence $\left\{a_{n}\right\}_{n \geq 1}$ defined as follows: $a_{1}=1, a_{2 k}=1+a_{k}$ and $a_{2 k+1}=\frac{1}{a_{2 k}}$ for every $k \geq 1$. Prove that every positive rational number appears on the sequence $\left\{a_{n}\right\}$ exactly once.

6 Six thousand points are marked on a circle, and they are colored using 10 colors in such a way that within every group of 100 consecutive points all the colors are used. Determine the least positive integer k with the following property: In every coloring satisfying the condition above, it is possible to find a group of k consecutive points in which all the colors are used.

