

AoPS Community

IberoAmerican 2009

www.artofproblemsolving.com/community/c4549 by Jutaro, abwagnerrodz, parmenides51

Day 1 September 22nd

1 Given a positive integer $n \ge 2$, consider a set of n islands arranged in a circle. Between every two neigboring islands two bridges are built as shown in the figure.

Starting at the island X_1 , in how many ways one can one can cross the 2n bridges so that no bridge is used more than once?

- **2** Define the succession a_n , n > 0 as n + m, where m is the largest integer such that $2^{2^m} \le n2^n$. Find all numbers that are not in the succession.
- **3** Let C_1 and C_2 be two congruent circles centered at O_1 and O_2 , which intersect at A and B. Take a point P on the arc AB of C_2 which is contained in C_1 . AP meets C_1 at C, CB meets C_2 at D and the bisector of $\angle CAD$ intersects C_1 and C_2 at E and L, respectively. Let F be the symmetric point of D with respect to the midpoint of PE. Prove that there exists a point X satisfying $\angle XFL = \angle XDC = 30^\circ$ and $CX = O_1O_2$.

Author: Arnoldo Aguilar (El Salvador)

Day 2 September 23rd

- **4** Given a triangle *ABC* of incenter *I*, let *P* be the intersection of the external bisector of angle *A* and the circumcircle of *ABC*, and *J* the second intersection of *PI* and the circumcircle of *ABC*. Show that the circumcircles of triangles *JIB* and *JIC* are respectively tangent to *IC* and *IB*.
- **5** Consider the sequence $\{a_n\}_{n\geq 1}$ defined as follows: $a_1 = 1$, $a_{2k} = 1 + a_k$ and $a_{2k+1} = \frac{1}{a_{2k}}$ for every $k \geq 1$. Prove that every positive rational number appears on the sequence $\{a_n\}$ exactly once.
- **6** Six thousand points are marked on a circle, and they are colored using 10 colors in such a way that within every group of 100 consecutive points all the colors are used. Determine the least positive integer *k* with the following property: In every coloring satisfying the condition above, it is possible to find a group of *k* consecutive points in which all the colors are used.

Art of Problem Solving is an ACS WASC Accredited School.

AoPS Online **AoPS** Academy **AoPS Academy**