Art of Problem Solving

## AoPS Community

## 2011 IberoAmerican

## IberoAmerican 2011

www.artofproblemsolving.com/community/c4551
by Gerard. 123

## Day 1

1 The number 2 is written on the board. Ana and Bruno play alternately. Ana begins. Each one, in their turn, replaces the number written by the one obtained by applying exactly one of these operations: multiply the number by 2 , multiply the number by 3 or add 1 to the number. The first player to get a number greater than or equal to 2011 wins. Find which of the two players has a winning strategy and describe it.

2 Find all positive integers $n$ for which exist three nonzero integers $x, y, z$ such that $x+y+z=0$ and:

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{n}
$$

3 Let $A B C$ be a triangle and $X, Y, Z$ be the tangency points of its inscribed circle with the sides $B C, C A, A B$, respectively. Suppose that $C_{1}, C_{2}, C_{3}$ are circle with chords $Y Z, Z X, X Y$, respectively, such that $C_{1}$ and $C_{2}$ intersect on the line $C Z$ and that $C_{1}$ and $C_{3}$ intersect on the line $B Y$. Suppose that $C_{1}$ intersects the chords $X Y$ and $Z X$ at $J$ and $M$, respectively; that $C_{2}$ intersects the chords $Y Z$ and $X Y$ at $L$ and $I$, respectively; and that $C_{3}$ intersects the chords $Y Z$ and $Z X$ at $K$ and $N$, respectively. Show that $I, J, K, L, M, N$ lie on the same circle.

## Day 2

1 Let $A B C$ be an acute-angled triangle, with $A C \neq B C$ and let $O$ be its circumcenter. Let $P$ and $Q$ be points such that $B O A P$ and $C O P Q$ are parallelograms. Show that $Q$ is the orthocenter of $A B C$.

2 Let $x_{1}, \ldots, x_{n}$ be positive real numbers. Show that there exist $a_{1}, \ldots, a_{n} \in\{-1,1\}$ such that:

$$
a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+\ldots+a_{n} x_{n}^{2} \geq\left(a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}\right)^{2}
$$

3 Let $k$ and $n$ be positive integers, with $k \geq 2$. In a straight line there are $k n$ stones of $k$ colours, such that there are $n$ stones of each colour. A step consists of exchanging the position of two adjacent stones. Find the smallest positive integer $m$ such that it is always possible to achieve, with at most $m$ steps, that the $n$ stones are together, if:
a) $n$ is even.
b) $n$ is odd and $k=3$

