2012 IberoAmerican

AoPS Community

IberoAmerican 2012

www.artofproblemsolving.com/community/c4552 by hvaz, hatchguy

Day 1	
1	Let $ABCD$ be a rectangle. Construct equilateral triangles BCX and DCY , in such a way that both of these triangles share some of their interior points with some interior points of the rectangle. Line AX intersects line CD on P , and line AY intersects line BC on Q . Prove that triangle APQ is equilateral.
2	A positive integer is called <i>shiny</i> if it can be written as the sum of two not necessarily distinct integers a and b which have the same sum of their digits. For instance, 2012 is <i>shiny</i> , because $2012 = 2005 + 7$, and both 2005 and 7 have the same sum of their digits. Find all positive integers which are not <i>shiny</i> (the dark integers).
3	Let <i>n</i> to be a positive integer. Given a set $\{a_1, a_2, \ldots, a_n\}$ of integers, where $a_i \in \{0, 1, 2, 3, \ldots, 2^n - 1\}$, $\forall i$, we associate to each of its subsets the sum of its elements; particularly, the empty subset has sum of its elements equal to 0. If all of these sums have different remainders when divided by 2^n , we say that $\{a_1, a_2, \ldots, a_n\}$ is [i] <i>n</i> -complete[/i].
	For each n , find the number of [i] n -complete[/i] sets.
Day 2	
1	Let a, b, c, d be integers such that the number $a - b + c - d$ is odd and it divides the number $a^2 - b^2 + c^2 - d^2$. Show that, for every positive integer n , $a - b + c - d$ divides $a^n - b^n + c^n - d^n$.
2	Let ABC be a triangle, P and Q the intersections of the parallel line to BC that passes through A with the external angle bisectors of angles B and C , respectively. The perpendicular to BP at P and the perpendicular to CQ at Q meet at R . Let I be the incenter of ABC . Show that $AI = AR$.
3	Show that, for every positive integer n , there exist n consecutive positive integers such that none is divisible by the sum of its digits.
	(Alternative Formulation: Call a number good if it's not divisible by the sum of its digits. Show that for every positive integer n there are n consecutive good numbers.)

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🕬