Art of Problem Solving

AoPS Community

IberoAmerican 2012

www.artofproblemsolving.com/community/c4552
by hvaz, hatchguy

Day 1

1 Let $A B C D$ be a rectangle. Construct equilateral triangles $B C X$ and $D C Y$, in such a way that both of these triangles share some of their interior points with some interior points of the rectangle. Line $A X$ intersects line $C D$ on P, and line $A Y$ intersects line $B C$ on Q. Prove that triangle $A P Q$ is equilateral.

2 A positive integer is called shiny if it can be written as the sum of two not necessarily distinct integers a and b which have the same sum of their digits. For instance, 2012 is shiny, because $2012=2005+7$, and both 2005 and 7 have the same sum of their digits. Find all positive integers which are not shiny (the dark integers).

3 Let n to be a positive integer. Given a set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of integers, where $a_{i} \in\left\{0,1,2,3, \ldots, 2^{n}-\right.$ $1\}, \forall i$, we associate to each of its subsets the sum of its elements; particularly, the empty subset has sum of its elements equal to 0 . If all of these sums have different remainders when divided by 2^{n}, we say that $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is [i] n-complete[/i].

For each n, find the number of $[i] n$-complete[/i] sets.

Day 2

1 Let a, b, c, d be integers such that the number $a-b+c-d$ is odd and it divides the number $a^{2}-b^{2}+c^{2}-d^{2}$. Show that, for every positive integer $n, a-b+c-d$ divides $a^{n}-b^{n}+c^{n}-d^{n}$.

2 Let $A B C$ be a triangle, P and Q the intersections of the parallel line to $B C$ that passes through A with the external angle bisectors of angles B and C, respectively. The perpendicular to $B P$ at P and the perpendicular to $C Q$ at Q meet at R. Let I be the incenter of $A B C$. Show that $A I=A R$.

3 Show that, for every positive integer n, there exist n consecutive positive integers such that none is divisible by the sum of its digits.
(Alternative Formulation: Call a number good if it's not divisible by the sum of its digits. Show that for every positive integer n there are n consecutive good numbers.)

