2013 IberoAmerican

AoPS Community

IberoAmerican 2013

www.artofproblemsolving.com/community/c4553 by Davi Medeiros, JuanOrtiz

Day 1

1	A set <i>S</i> of positive integers is said to be <i>channeler</i> if for any three distinct numbers $a, b, c \in S$, we have $a \mid bc, b \mid ca, c \mid ab$.
	a) Prove that for any finite set of positive integers $\{c_1, c_2, \ldots, c_n\}$ there exist infinitely many positive integers k , such that the set $\{kc_1, kc_2, \ldots, kc_n\}$ is a channeler set.
	b) Prove that for any integer $n \ge 3$ there is a channeler set who has exactly n elements, and such that no integer greater than 1 divides all of its elements.
2	Let <i>X</i> and <i>Y</i> be the diameter's extremes of a circunference Γ and <i>N</i> be the midpoint of one of the arcs <i>XY</i> of Γ . Let <i>A</i> and <i>B</i> be two points on the segment <i>XY</i> . The lines <i>NA</i> and <i>NB</i> cuts Γ again in <i>C</i> and <i>D</i> , respectively. The tangents to Γ at <i>C</i> and at <i>D</i> meets in <i>P</i> . Let <i>M</i> the the intersection point between <i>XY</i> and <i>NP</i> . Prove that <i>M</i> is the midpoint of the segment <i>AB</i> .
3	Let $A = \{1,, n\}$ with $n > 5$. Prove that one can find B a finite set of positive integers such that A is a subset of B and
	$\sum_{x \in B} x^2 = \prod_{x \in B} x$
Day 2	

4 Let Γ be a circunference and O its center. AE is a diameter of Γ and B the midpoint of one of the arcs AE of Γ . The point $D \neq E$ in on the segment OE. The point C is such that the quadrilateral ABCD is a parallelogram, with AB parallel to CD and BC parallel to AD. The lines EB and CD meets at point F. The line OF cuts the minor arc EB of Γ at I.

Prove that the line EI is the angle bissector of $\angle BEC$.

- **5** Let *A* and *B* be two sets such that $A \cup B$ is the set of the positive integers, and $A \cap B$ is the empty set. It is known that if two positive integers have a prime larger than 2013 as their difference, then one of them is in *A* and the other is in *B*. Find all the possibilities for the sets *A* and *B*.
- 6 A *beautiful configuration* of points is a set of n colored points, such that if a triangle with vertices in the set has an angle of at least 120 degrees, then exactly 2 of its vertices are colored with the same color. Determine the maximum possible value of n.

2013 IberoAmerican

AoPS Online AoPS Academy AoPS Cast Art of Problem Solving is an ACS WASC Accredited School.