Art of Problem Solving

AoPS Community

IberoAmerican 2013

www.artofproblemsolving.com/community/c4553
by Davi Medeiros, JuanOrtiz

Day 1

1 A set S of positive integers is said to be channeler if for any three distinct numbers $a, b, c \in S$, we have $a|b c, b| c a, c \mid a b$.
a) Prove that for any finite set of positive integers $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ there exist infinitely many positive integers k, such that the set $\left\{k c_{1}, k c_{2}, \ldots, k c_{n}\right\}$ is a channeler set.
b) Prove that for any integer $n \geq 3$ there is a channeler set who has exactly n elements, and such that no integer greater than 1 divides all of its elements.

2 Let X and Y be the diameter's extremes of a circunference Γ and N be the midpoint of one of the arcs $X Y$ of Γ. Let A and B be two points on the segment $X Y$. The lines $N A$ and $N B$ cuts Γ again in C and D, respectively. The tangents to Γ at C and at D meets in P. Let M the the intersection point between $X Y$ and $N P$. Prove that M is the midpoint of the segment $A B$.

3 Let $A=\{1, \ldots, n\}$ with $n>5$. Prove that one can find B a finite set of positive integers such that A is a subset of B and
$\sum_{x \in B} x^{2}=\prod_{x \in B} x$
Day 2
$4 \quad$ Let Γ be a circunference and O its center. $A E$ is a diameter of Γ and B the midpoint of one of the $\operatorname{arcs} A E$ of Γ. The point $D \neq E$ in on the segment $O E$. The point C is such that the quadrilateral $A B C D$ is a parallelogram, with $A B$ parallel to $C D$ and $B C$ parallel to $A D$. The lines $E B$ and $C D$ meets at point F. The line $O F$ cuts the minor $\operatorname{arc} E B$ of Γ at I.

Prove that the line $E I$ is the angle bissector of $\angle B E C$.
5 Let A and B be two sets such that $A \cup B$ is the set of the positive integers, and $A \cap B$ is the empty set. It is known that if two positive integers have a prime larger than 2013 as their difference, then one of them is in A and the other is in B. Find all the possibilities for the sets A and B.

6 A beautiful configuration of points is a set of n colored points, such that if a triangle with vertices in the set has an angle of at least 120 degrees, then exactly 2 of its vertices are colored with the same color. Determine the maximum possible value of n.

