Art of Problem Solving

AoPS Community

IberoAmerican 2014

www.artofproblemsolving.com/community/c4554
by ralk912, Leicich, Davi Medeiros

Day 1 September 23rd

1 For each positive integer n, let $s(n)$ be the sum of the digits of n. Find the smallest positive integer k such that

$$
s(k)=s(2 k)=s(3 k)=\cdots=s(2013 k)=s(2014 k) .
$$

2 Find all polynomials $P(x)$ with real coefficients such that $P(2014)=1$ and, for some integer c : $x P(x-c)=(x-2014) P(x)$

32014 points are placed on a circumference. On each of the segments with end points on two of the 2014 points is written a non-negative real number. For any convex polygon with vertices on some of the 2014 points, the sum of the numbers written on their sides is less or equal than 1 . Find the maximum possible value for the sum of all the written numbers.

Day 2 September 24th
$1 \quad N$ coins are placed on a table, $N-1$ are genuine and have the same weight, and one is fake, with a different weight. Using a two pan balance, the goal is to determine with certainty the fake coin, and whether it is lighter or heavier than a genuine coin. Whenever one can deduce that one or more coins are genuine, they will be inmediately discarded and may no longer be used in subsequent weighings. Determine all N for which the goal is achievable. (There are no limits regarding how many times one may use the balance).
Note: the only difference between genuine and fake coins is their weight; otherwise, they are identical.

2 Let $A B C$ be an acute triangle and H its orthocenter. Let D be the intersection of the altitude from A to $B C$. Let M and N be the midpoints of $B H$ and $C H$, respectively. Let the lines $D M$ and $D N$ intersect $A B$ and $A C$ at points X and Y respectively. If P is the intersection of $X Y$ with $B H$ and Q the intersection of $X Y$ with $C H$, show that H, P, D, Q lie on a circumference.
$3 \quad$ Given a set X and a function $f: X \rightarrow X$, for each $x \in X$ we define $f^{1}(x)=f(x)$ and, for each $j \geq 1, f^{j+1}(x)=f\left(f^{j}(x)\right)$. We say that $a \in X$ is a fixed point of f if $f(a)=a$. For each $x \in \mathbb{R}$, let $\pi(x)$ be the quantity of positive primes lesser or equal to x.

Given an positive integer n, we say that $f:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ is catracha if $f^{f(k)}(k)=$ k, for every $k=1,2, \ldots n$. Prove that:
(a) If f is catracha, f has at least $\pi(n)-\pi(\sqrt{n})+1$ fixed points.
(b) If $n \geq 36$, there exists a catracha function f with exactly $\pi(n)-\pi(\sqrt{n})+1$ fixed points.

