Art of Problem Solving

AoPS Community

CentroAmerican 2003

www.artofproblemsolving.com/community/c4559
by WakeUp, Jutaro

1 Two players A and B take turns playing the following game: There is a pile of 2003 stones. In his first turn, A selects a divisor of 2003 and removes this number of stones from the pile. B then chooses a divisor of the number of remaining stones, and removes that number of stones from the new pile, and so on. The player who has to remove the last stone loses. Show that one of the two players has a winning strategy and describe the strategy.
$2 \quad S$ is a circle with $A B$ a diameter and t is the tangent line to S at B. Consider the two points C and D on t such that B is between C and D. Suppose E and F are the intersections of S with $A C$ and $A D$ and G and H are the intersections of S with $C F$ and $D E$. Show that $A H=A G$.
$3 \quad$ Let a and b be positive integers with $a>1$ and $b>2$. Prove that $a^{b}+1 \geq b(a+1)$ and determine when there is inequality.
$4 \quad S_{1}$ and S_{2} are two circles that intersect at two different points P and Q. Let ℓ_{1} and ℓ_{2} be two parallel lines such that ℓ_{1} passes through the point P and intersects S_{1}, S_{2} at A_{1}, A_{2} respectively (both distinct from P), and ℓ_{2} passes through the point Q and intersects S_{1}, S_{2} at B_{1}, B_{2} respectively (both distinct from Q).
Show that the triangles $A_{1} Q A_{2}$ and $B_{1} P B_{2}$ have the same perimeter.
5 A square board with 8 cm sides is divided into 64 squares square with each side 1 cm . Each box can be painted white or black. Find the total number of ways to colour the board so that each square of side 2 cm formed by four squares with a common vertex contains two white and two black squares.

6 Say a number is tico if the sum of it's digits is a multiple of 2003.
(i) Show that there exists a positive integer N such that the first 2003 multiples, $N, 2 N, 3 N, \ldots 2003 N$ are all tico.
(ii) Does there exist a positive integer N such that all it's multiples are tico?

