Art of Problem Solving

AoPS Community

CentroAmerican 2007

www.artofproblemsolving.com/community/c4563
by Jutaro

Day 1 June 5th

1 The Central American Olympiad is an annual competition. The ninth Olympiad is held in 2007. Find all the positive integers n such that n divides the number of the year in which the n-th Olympiad takes place.

2 In a triangle $A B C$, the angle bisector of A and the cevians $B D$ and $C E$ concur at a point P inside the triangle. Show that the quadrilateral $A D P E$ has an incircle if and only if $A B=A C$.

3 Let S be a finite set of integers. Suppose that for every two different elements of S, p and q, there exist not necessarily distinct integers $a \neq 0, b, c$ belonging to S, such that p and q are the roots of the polynomial $a x^{2}+b x+c$. Determine the maximum number of elements that S can have.

Day 2 June 6th

1 In a remote island, a language in which every word can be written using only the letters a, b, c, d, e, f, g is spoken. Let's say two words are synonymous if we can transform one into the other according to the following rules:
i) Change a letter by another two in the following way:

$$
a \rightarrow b c, b \rightarrow c d, c \rightarrow d e, d \rightarrow e f, e \rightarrow f g, f \rightarrow g a, g \rightarrow a b
$$

ii) If a letter is between other two equal letters, these can be removed. For example, $d f d \rightarrow f$.

Show that all words in this language are synonymous.
2 Given two non-negative integers $m>n$, let's say that m ends in n if we can get n by erasing some digits (from left to right) in the decimal representation of m. For example, 329 ends in 29, and also in 9.

Determine how many three-digit numbers end in the product of their digits.
3 Consider a circle S, and a point P outside it. The tangent lines from P meet S at A and B, respectively. Let M be the midpoint of $A B$. The perpendicular bisector of $A M$ meets S in a point C lying inside the triangle $A B P$. $A C$ intersects $P M$ at G, and $P M$ meets S in a point D lying outside the triangle $A B P$. If $B D$ is parallel to $A C$, show that G is the centroid of the triangle
$A B P$.
Arnoldo Aguilar (El Salvador)

