Art of Problem Solving

AoPS Community

CentroAmerican 2009

www.artofproblemsolving.com/community/c4565
by Concyclicboy

Day 1 October 6th

1 Let P be the product of all non-zero digits of the positive integer n. For example, $P(4)=4$, $P(50)=5, P(123)=6, P(2009)=18$.
Find the value of the sum: $P(1)+P(2)+\ldots+P(2008)+P(2009)$.
2
Two circles Γ_{1} and Γ_{2} intersect at points A and B. Consider a circle Γ contained in Γ_{1} and Γ_{2}, which is tangent to both of them at D and E respectively. Let C be one of the intersection points of line $A B$ with Γ, F be the intersection of line $E C$ with Γ_{2} and G be the intersection of line $D C$ with Γ_{1}. Let H and I be the intersection points of line $E D$ with Γ_{1} and Γ_{2} respectively. Prove that F, G, H and I are on the same circle.

3 There are 2009 boxes numbered from 1 to 2009, some of which contain stones. Two players, A and B, play alternately, starting with A. A move consists in selecting a non-empty box i, taking one or more stones from that box and putting them in box $i+1$. If $i=2009$, the selected stones are eliminated. The player who removes the last stone wins
a) If there are 2009 stones in the box 2 and the others are empty, find a winning strategy for either player.
b) If there is exactly one stone in each box, find a winning strategy for either player.

Day 2 October 7th

4 We wish to place natural numbers around a circle such that the following property is satisfied: the absolute values of the differences of each pair of neighboring numbers are all different.
a) Is it possible to place the numbers from 1 to 2009 satisfying this property
b) Is it possible to suppress one of the numbers from 1 to 2009 in such a way that the remaining 2008 numbers can be placed satisfying the property

5 Given an acute and scalene triangle $A B C$, let H be its orthocenter, O its circumcenter, E and F the feet of the altitudes drawn from B and C, respectively. Line $A O$ intersects the circumcircle of the triangle again at point G and segments $F E$ and $B C$ at points X and Y respectively. Let Z be the point of intersection of line $A H$ and the tangent line to the circumcircle at G. Prove that $H X$ is parallel to $Y Z$.
$6 \quad$ Find all prime numbers p and q such that $p^{3}-q^{5}=(p+q)^{2}$.

