

AoPS Community

CentroAmerican 2009

www.artofproblemsolving.com/community/c4565 by Concyclicboy

Day 1 October 6th

_

1		Let P be the product of all non-zero digits of the positive integer n. For example, $P(4) = 4$, $P(50) = 5$, $P(123) = 6$, $P(2009) = 18$. Find the value of the sum: P(1) + P(2) + + P(2008) + P(2009).
2		
		Two circles Γ_1 and Γ_2 intersect at points A and B . Consider a circle Γ contained in Γ_1 and Γ_2 , which is tangent to both of them at D and E respectively. Let C be one of the intersection points of line AB with Γ , F be the intersection of line EC with Γ_2 and G be the intersection of line DC with Γ_1 . Let H and I be the intersection points of line ED with Γ_1 and Γ_2 respectively. Prove that F, G, H and I are on the same circle.
3		There are 2009 boxes numbered from 1 to 2009, some of which contain stones. Two players, A and B , play alternately, starting with A . A move consists in selecting a non-empty box i , taking one or more stones from that box and putting them in box $i + 1$. If $i = 2009$, the selected stones are eliminated. The player who removes the last stone wins a) If there are 2009 stones in the box 2 and the others are empty, find a winning strategy for either player. b) If there is exactly one stone in each box, find a winning strategy for either player.
D	ay 2	October 7th
4	ŀ	We wish to place natural numbers around a circle such that the following property is satisfied: the absolute values of the differences of each pair of neighboring numbers are all different. a) Is it possible to place the numbers from 1 to 2009 satisfying this property b) Is it possible to suppress one of the numbers from 1 to 2009 in such a way that the remaining 2008 numbers can be placed satisfying the property
5	;	Given an acute and scalene triangle ABC , let H be its orthocenter, O its circumcenter, E and F the feet of the altitudes drawn from B and C , respectively. Line AO intersects the circumcircle of the triangle again at point G and segments FE and BC at points X and Y respectively. Let Z be the point of intersection of line AH and the tangent line to the circumcircle at G . Prove that HX is parallel to YZ .
6	•	Find all prime numbers p and q such that $p^3 - q^5 = (p+q)^2$.

Art of Problem Solving is an ACS WASC Accredited School.