

AoPS Community

CentroAmerican 2010

www.artofproblemsolving.com/community/c4566 by Jutaro

1 Denote by S(n) the sum of the digits of the positive integer n. Find all the solutions of the equation

n(S(n) - 1) = 2010.

- **2** Let *ABC* be a triangle and *L*, *M*, *N* be the midpoints of *BC*, *CA* and *AB*, respectively. The tangent to the circumcircle of *ABC* at *A* intersects *LM* and *LN* at *P* and *Q*, respectively. Show that *CP* is parallel to *BQ*.
- **3** A token is placed in one square of a $m \times n$ board, and is moved according to the following rules:

-In each turn, the token can be moved to a square sharing a side with the one currently occupied.

-The token cannot be placed in a square that has already been occupied.

-Any two consecutive moves cannot have the same direction.

The game ends when the token cannot be moved. Determine the values of m and n for which, by placing the token in some square, all the squares of the board will have been occupied in the end of the game.

4 Find all positive integers N such that an $N \times N$ board can be tiled using tiles of size 5×5 or 1×3 .

Note: The tiles must completely cover all the board, with no overlappings.

5 If p, q and r are nonzero rational numbers such that $\sqrt[3]{pq^2} + \sqrt[3]{qr^2} + \sqrt[3]{rp^2}$ is a nonzero rational number, prove that

 $\frac{1}{\sqrt[3]{pq^2}} + \frac{1}{\sqrt[3]{qr^2}} + \frac{1}{\sqrt[3]{rp^2}}$

is also a rational number.

6 Let Γ and Γ_1 be two circles internally tangent at A, with centers O and O_1 and radii r and r_1 , respectively $(r > r_1)$. B is a point diametrically opposed to A in Γ , and C is a point on Γ such that BC is tangent to Γ_1 at P. Let A' the midpoint of BC. Given that O_1A' is parallel to AP, find the ratio r/r_1 .

🟟 AoPS Online 🟟 AoPS Academy 🔯 AoPS 🗱